scholarly journals Antispasmodic Effect of Asperidine B, a Pyrrolidine Derivative, through Inhibition of L-Type Ca2+ Channel in Rat Ileal Smooth Muscle

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5492
Author(s):  
Acharaporn Duangjai ◽  
Vatcharin Rukachaisirikul ◽  
Yaowapa Sukpondma ◽  
Chutima Srimaroeng ◽  
Chatchai Muanprasat

Antispasmodic agents are used for modulating gastrointestinal motility. Several compounds isolated from terrestrial plants have antispasmodic properties. This study aimed to explore the inhibitory effect of the pyrrolidine derivative, asperidine B, isolated from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178, on spasmodic activity. Isolated rat ileum was set up in an organ bath. The contractile responses of asperidine B (0.3 to 30 µM) on potassium chloride and acetylcholine-induced contractions were recorded. To investigate its antispasmodic mechanism, CaCl2, acetylcholine, Nω-nitro-l-arginine methyl ester (l-NAME), nifedipine, methylene blue and tetraethylammonium chloride (TEA) were tested in the absence or in the presence of asperidine B. Cumulative concentrations of asperidine B reduced the ileal contraction by ~37%. The calcium chloride and acetylcholine-induced ileal contraction was suppressed by asperidine B. The effects of asperidine B combined with nifedipine, atropine or TEA were similar to those treated with nifedipine, atropine or TEA, respectively. In contrast, in the presence of l-NAME and methylene blue, the antispasmodic effect of asperidine B was unaltered. These results suggest that the antispasmodic property of asperidine B is probably due to the blockage of the L-type Ca2+ channel and is associated with K+ channels and muscarinic receptor, possibly by affecting non-selective cation channels and/or releasing intracellular calcium.

1970 ◽  
Vol 1 (4) ◽  
pp. 102-105 ◽  
Author(s):  
M Alam ◽  
MM Rahman ◽  
MJ Foysal ◽  
MN Hossain

The toxic effects of four disinfectants viz., copper sulfate (CuSO4), potassium permanganate (KMnO4), methylene blue and malachite green on fish and fish pathogenic bacteria Aeromonas sp., Pseudomonas fluorescens, Edwardsiella sp. and Flavobacterium sp. were investigated. Lethal concentration of the disinfectants to fingerlings of Labeo rohita was determined in aquarium by standard method. Lethal concentration of copper sulfate (CuSO4), potassium permanganate (KMnO4), methylene blue and malachite green against fish were found in 0.75ppm, 7ppm, 6ppm and 0.5ppm at 21.4hrs, 18hrs, 9.5hrs and 1.40hrs, respectively. Methylene blue at 4ppm and 5ppm concentration inhibited the growth of Pseudomonas fluorescens and 6ppm concentration suppressed the growth of Aeromonas sp. Copper sulfate (CuSO4) was effective only against Edwardsiella sp at concentration of 10ppm and 8ppm. Malachite green repressed the growth of all four tasted bacteria at a concentration of 1ppm. Potassium permanganate (KMnO4) was failed to exhibit any inhibitory effect on the bacteria even at 30ppm concentration. DOI: http://dx.doi.org/10.3329/ijns.v1i4.9738 IJNS 2011 1(4): 102-105


2014 ◽  
Vol 221 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Antonella Amato ◽  
Sara Baldassano ◽  
Rosa Liotta ◽  
Rosa Serio ◽  
Flavia Mulè

Glucagon-like peptide 1 (GLP1) is a naturally occurring peptide secreted by intestinal L-cells. Though its primary function is to serve as an incretin, GLP1 reduces gastrointestinal motility. However, only a handful of animal studies have specifically evaluated the influence of GLP1 on colonic motility. Consequently, the aims of this study were to investigate the effects induced by exogenous GLP1, to analyze the mechanism of action, and to verify the presence of GLP1 receptors (GLP1Rs) in human colon circular muscular strips. Organ bath technique, RT-PCR, western blotting, and immunofluorescence were used. In human colon, exogenous GLP1 reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. This inhibitory effect was significantly reduced by exendin (9–39), a GLP1R antagonist, which per se significantly increased the spontaneous mechanical activity. Moreover, it was abolished by tetrodotoxin, a neural blocker, or Nω-nitro-l-arginine – a blocker of neuronal nitric oxide synthase (nNOS). The biomolecular analysis revealed a genic and protein expression of the GLP1R in the human colon. The double-labeling experiments with anti-neurofilament or anti-nNOS showed, for the first time, that immunoreactivity for the GLP1R was expressed in nitrergic neurons of the myenteric plexus. In conclusion, the results of this study suggest that GLP1R is expressed in the human colon and, once activated by exogenous GLP1, mediates an inhibitory effect on large intestine motility through NO neural release.


2003 ◽  
Vol 98 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Ju-Tae Sohn ◽  
Paul A. Murray

Background The authors recently demonstrated that etomidate and ketamine attenuated endothelium-dependent pulmonary vasorelaxation mediated by nitric oxide and Ca -activated K + channels. In the current study, they tested the hypothesis that these intravenous anesthetics inhibit pulmonary vasorelaxation mediated by adenosine triphosphate-sensitive potassium (K + ATP ) channel activation. Methods Endothelium intact and denuded pulmonary arterial rings were suspended in organ chambers for isometric tension recording. The effects of etomidate (5 x 10(-6) and 5 x 10(-5) m) and ketamine (5 x 10(-5) and 10(-4) m) on vasorelaxation responses to lemakalim (K + ATP channel activator), prostacyclin, and papaverine were assessed in phenylephrine-precontracted rings. The effect of cyclooxygenase inhibition with indomethacin was assessed in some protocols. Results Etomidate (5 x 10(-6) m) only inhibited the vasorelaxant response to lemakalim in endothelium intact rings, whereas a higher concentration of etomidate (5 x 10(-5) m) inhibited relaxation in both intact and endothelium-denuded rings. Pretreatment with indomethacin abolished the endothelium-dependent attenuation of lemakalim-induced relaxation caused by etomidate. Ketamine (5 x 10(-5) and 10(-5) m) inhibited the relaxation response to lemakalim to the same extent in both endothelium-intact and -denuded rings, and this effect was not prevented by indomethacin pretreatment. Etomidate and ketamine had no effect on the relaxation responses to prostacyclin or papaverine. Conclusions These results indicate that etomidate, but not ketamine, attenuates the endothelium-dependent component of lemakalim-induced pulmonary vasorelaxation an inhibitory effect on the cyclooxygenase pathway. Both anesthetics inhibit K + ATP -mediated pulmonary vasorelaxation a direct effect on pulmonary vascular smooth muscle.


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


1991 ◽  
Vol 260 (3) ◽  
pp. H967-H972
Author(s):  
K. Kadota ◽  
Y. Yui ◽  
R. Hattori ◽  
H. Uchizumi ◽  
C. Kawai

It was found that when rat peritoneal neutrophils were added to an organ bath, they released an unstable vasoactive substance designated as neutrophil-derived relaxing factor (NDRF), which is similar to endothelium-derived relaxing factor. Besides NDRF, a more stable (activity maintained for at least 7 days at -80 degrees C) relaxing factor was found to be generated in the supernatant after the incubation of rat peritoneal neutrophils in buffer. This supernatant relaxing factor (SRF) induced an increase in the guanosine 3',5'-cyclic monophosphate content of aortic strips. Its relaxing activity was potentiated by superoxide dismutase. It was inhibited by hemoglobin, hydroquinone, or methylene blue but not by catalase or mannitol. Preincubation of polymorphonuclear neutrophils with aspirin, quinacrine, metyrapone, or AA-861 had no effect on the relaxing activity of SRF. L-Arginine dose dependently increased the relaxing activity of SRF, whereas NG-monomethyl-L-arginine (L-NMMA) decreased it, and this decrease was reversed by L-arginine. In contrast, neither L-arginine nor L-NMMA affected the relaxing activity of NDRF. These data suggest that SRF may represent a relaxing factor that is synthesized de novo from L-arginine.


1993 ◽  
Vol 265 (4) ◽  
pp. L410-L415 ◽  
Author(s):  
C. M. Lilly ◽  
J. S. Stamler ◽  
B. Gaston ◽  
C. Meckel ◽  
J. Loscalzo ◽  
...  

The mechanism of vasoactive intestinal peptide (VIP)-induced pulmonary relaxation in tracheally perfused guinea pig lungs was defined with the use of inhibitors of nitric oxide synthase (NOS) and by direct measurement of nitric oxide (NO) equivalents recovered from lung perfusion fluid. Lungs treated with 200 microM NG-nitro-L-arginine were resistant to the relaxant effects of VIP in these lungs; the 50% inhibitory dose (ID50) for VIP was 32 nmol/kg (95% confidence interval, 16–79), which was approximately 100-fold greater than the ID50 of control lungs which was 0.39 nmol/kg, (0.16–0.79, P < 0.0001). This inhibitory effect could be overcome with excess L- but not D-arginine. In contrast, VIP-induced relaxation of isolated guinea pig trachea was not modified by inhibitors of NOS. To confirm that VIP infusion resulted in NO generation in whole lungs, we measured NO equivalents in lung effluent by two distinct technologies. We found that VIP injection caused a significant increase in NO equivalents from 0.11 +/- 0.04 microM to 0.78 +/- 0.15 microM (P < 0.05) and that this increase preceded VIP-induced pulmonary relaxation. Lungs pretreated with the putative guanylyl cyclase inhibitor methylene blue were less responsive to VIP [ID50 4.0 nmol/kg (1.5–10), P < 0.005 compared with control lungs], consistent with a physiologically significant guanosine 3',5'-cyclic monophosphate-dependent mechanism. Our data demonstrate that VIP has the capacity to relax whole lungs in part by stimulating the generation of NO.


1994 ◽  
Vol 266 (1) ◽  
pp. E39-E43 ◽  
Author(s):  
X. Wang ◽  
T. Inukai ◽  
M. A. Greer ◽  
S. E. Greer

All four different K(+)-channel blockers [tetraethylammonium (TEA), a nonselective K(+)-channel blocker; tolbutamide, an ATP-sensitive K(+)-channel blocker; quinine and 4-aminopyridine, both primarily voltage-dependent K(+)-channel blockers] stimulated prolactin (Prl) secretion by acutely dispersed anterior pituitary cells but had no effect on thyroid-stimulating hormone (TSH) secretion. TEA stimulated Prl secretion in a dose-dependent manner between 1 microM and 20 mM, but even as high as 20 mM, TEA did not induce TSH secretion. Valinomycin (2 microM), a K+ ionophore, inhibited both basal and TEA-induced Prl secretion. TEA-stimulated Prl secretion was abolished by using a Ca(2+)-depleted medium or adding 10 microM dopamine. TEA did not reverse the inhibitory effect of dopamine on thyrotropin-releasing hormone-induced Prl secretion. Our data indicate that K+ channels may play a role in the secretion of adenohypophysial hormones that is idiosyncratic for each hormone. Differences in the role of K+ channels may reflect differences between the various pituitary cell types in plasma membrane ion channel composition, membrane potential, or the mechanism of exocytosis.


2002 ◽  
Vol 283 (3) ◽  
pp. F407-F414 ◽  
Author(s):  
Rui-Min Gu ◽  
Wen-Hui Wang

We have used the patch-clamp technique to study the effect of arachidonic acid (AA) on the basolateral K channels in the medullary thick ascending limb (mTAL) of rat kidney. An inwardly rectifying 50-pS K channel was identified in cell-attached and inside-out patches in the basolateral membrane of the mTAL. The channel open probability ( P o) was 0.51 at the spontaneous cell membrane potential and decreased to 0.25 by 30 mV hyperpolarization. The addition of 5 μM AA decreased channel activity, identified as NP o, from 0.58 to 0.08 in cell-attached patches. The effect of AA on the 50-pS K channel was specific because 10 μM cis-11,14,17-eicosatrienoic acid had no significant effect on channel activity. To determine whether the effect of AA was mediated by AA per se or by its metabolites, we examined the effect of AA on channel activity in the presence of indomethacin, an inhibitor of cyclooxygenase, or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), an inhibitor of cytochrome P-450 monooxygenase. Inhibition of cyclooxygenase increased channel activity from 0.54 to 0.9. However, indomethacin did not abolish the inhibitory effect of AA on the 50-pS K channel. In contrast, inhibition of cytochrome P-450 metabolism not only increased channel activity from 0.49 to 0.83 but also completely abolished the effect of AA. Moreover, addition of DDMS can reverse the inhibitory effect of AA on channel activity. The notion that the effect of AA was mediated by cytochrome P-450-dependent metabolites of AA is also supported by the observation that addition of 100 nM of 20-hydroxyeicosatetraenoic acid, a main metabolite of AA in the mTAL, can mimic the effect of AA. We conclude that AA inhibits the 50-pS K channel in the basolateral membrane of the mTAL and that the effect of AA is mainly mediated by cytochrome P-450-dependent metabolites of AA.


Sign in / Sign up

Export Citation Format

Share Document