scholarly journals A New Class of Uracil–DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6668
Author(s):  
Inga R. Grin ◽  
Grigory V. Mechetin ◽  
Rustem D. Kasymov ◽  
Evgeniia A. Diatlova ◽  
Anna V. Yudkina ◽  
...  

Uracil–DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil–DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme’s active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.

1992 ◽  
Vol 287 (3) ◽  
pp. 1007-1010 ◽  
Author(s):  
A Verri ◽  
P Mazzarello ◽  
S Spadari ◽  
F Focher

We have investigated the substrate specificity of human, viral and bacterial uracil-DNA glycosylases employing as substrate double-stranded oligonucleotides containing in the same position of the 5′-32P-labelled strand an uracil residue facing, on the complementary strand, guanine (mimicking cytosine deamination) or adenine (mimicking dUTP misincorporation). The enzyme removal of uracil was monitored and quantified by the generation of alkali-sensitive apyrimidinic sites. All three uracil-DNA glycosylases excise uracil from mispaired oligonucleotides (U/G) more efficiently than from paired oligonucleotides (U/A). The enzymes also remove uracil from single-stranded oligonucleotide with an efficiency similar to that observed with U/A paired oligonucleotide. The efficient recognition of U/G mispair by uracil-DNA glycosylase is important in minimizing miscoding transcripts and C/G-->T/A transitions in proliferating cells.


2015 ◽  
Vol 11 (12) ◽  
pp. 3273-3278
Author(s):  
Scott T. Kimber ◽  
Tom Brown ◽  
Keith R. Fox

We have examined how sequence context affects the ability of (N204D:L272A) mutants of uracil DNA glycosylase to cleave CX mismatches.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1647-1658 ◽  
Author(s):  
Narottam Acharya ◽  
Pradeep Kumar ◽  
Umesh Varshney

Uracil, a promutagenic base, appears in DNA either by deamination of cytosine or by incorporation of dUMP by DNA polymerases. This unconventional base in DNA is removed by uracil-DNA glycosylase (UDG). Interestingly, a bacteriophage-encoded short polypeptide, UDG inhibitor (Ugi), specifically inhibits UDGs by forming a tight complex. Three-dimensional structures of the complexes of Ugi with UDGs from Escherichia coli, human and herpes simplex virus have shown that two of the structural elements in Ugi, the hydrophobic pocket and the β1-edge, establish key interactions with UDGs. In this report the characterization of complexes of Ugi with UDGs from Mycobacterium tuberculosis, a pathogenic bacterium, and Mycobacterium smegmatis, a widely used model organism for the former, is described. Unlike the E. coli (Eco) UDG-Ugi complex, which is stable to treatment with 8 M urea, the mycobacterial UDG-Ugi complexes dissociate in 5–6 M urea. Furthermore, the Ugi from the complexes of mycobacterial UDGs can be exchanged by the DNA substrate. Interestingly, while EcoUDG sequestered Ugi into the EcoUDG-Ugi complex when incubated with mycobacterial UDG-Ugi complexes, even a large excess of mycobacterial UDGs failed to sequester Ugi from the EcoUDG-Ugi complex. However, the M. tuberculosis (Mtu) UDG-Ugi complex was seen when MtuUDG was incubated with M. smegmatis (Msm) UDG-Ugi or EcoUDG(L191G)-Ugi complexes. The reversible nature of the complexes of Ugi with mycobacterial UDGs (which naturally lack some of the structural elements important for interaction with the β1-edge of Ugi) and with mutants of EcoUDG (which are deficient in interaction with the hydrophobic pocket of Ugi) highlights the significance of both classes of interaction in formation of UDG-Ugi complexes. Furthermore, it is shown that even though mycobacterial UDG-Ugi complexes dissociate in 5–6 M urea, Ugi is still a potent inhibitor of UDG activity in mycobacteria.


2016 ◽  
Vol 25 (12) ◽  
pp. 2113-2131 ◽  
Author(s):  
Norbert Schormann ◽  
Natalia Zhukovskaya ◽  
Gregory Bedwell ◽  
Manunya Nuth ◽  
Richard Gillilan ◽  
...  

2011 ◽  
Vol 286 (28) ◽  
pp. 24702-24713 ◽  
Author(s):  
Kathleen A. Boyle ◽  
Eleni S. Stanitsa ◽  
Matthew D. Greseth ◽  
Jill K. Lindgren ◽  
Paula Traktman

Sign in / Sign up

Export Citation Format

Share Document