scholarly journals Synthesis of Fe2+ Substituted High-Performance LiMn1−xFexPO4/C (x = 0, 0.1, 0.2, 0.3, 0.4) Cathode Materials for Lithium-Ion Batteries via Sol-Gel Processes

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7641
Author(s):  
Kaibin Fang ◽  
Jihua Zhu ◽  
Qian Xie ◽  
Yifei Men ◽  
Wei Yang ◽  
...  

A series of carbon-coated LiMn1−xFexPO4 (x = 0, 0.1, 0.2, 0.3, 0.4) materials are successfully constructed using glucose as carbon sources via sol-gel processes. The morphology of the synthesized material particles are more regular and particle sizes are more homogeneous. The carbon-coated LiMn0.8Fe0.2PO4 material obtains the discharge specific capacity of 152.5 mAh·g−1 at 0.1 C rate and its discharge specific capacity reaches 95.7 mAh·g−1 at 5 C rate. Iron doping offers a viable way to improve the electronic conductivity and lattice defects of materials, as well as improving transmission kinetics, thereby improving the rate performance and cycle performance of materials, which is an effective method to promote the electrical properties.

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3992
Author(s):  
Jinshan Mo ◽  
Dongmei Zhang ◽  
Mingzhe Sun ◽  
Lehao Liu ◽  
Weihao Hu ◽  
...  

Nickel cobalt manganese ternary cathode materials are some of the most promising cathode materials in lithium-ion batteries, due to their high specific capacity, low cost, etc. However, they do have a few disadvantages, such as an unstable cycle performance and a poor rate performance. In this work, polyethylene oxide (PEO) with high ionic conductance and flexibility was utilized as a multifunctional binder to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Scanning electron microscopy showed that the addition of PEO can greatly improve the adhesion of the electrode components and simultaneously enhance the integrity of the electrode. Thus, the PEO-based electrode (20 wt% PEO in PEO/PVDF) shows a high electronic conductivity of 19.8 S/cm, which is around 15,000 times that of the pristine PVDF-based electrode. Moreover, the PEO-based electrode exhibits better cycling stability and rate performance, i.e., the capacity increases from 131.1 mAh/g to 147.3 mAh/g at 2 C with 20 wt% PEO addition. Electrochemical impedance measurements further indicate that the addition of the PEO binder can reduce the electrode resistance and protect the LiNi0.6Co0.2Mn0.2O2 cathode materials from the liquid electrolyte attack. This work offers a simple yet effective method to improve the cycling performance of the ternary cathode materials by adding an appropriate amount of PEO as a binder in the electrode fabrication process.


2017 ◽  
Vol 5 (36) ◽  
pp. 19136-19142 ◽  
Author(s):  
Qiang Zhang ◽  
Qiuming Gao ◽  
Weiwei Qian ◽  
Hang Zhang ◽  
Yanli Tan ◽  
...  

A ternary rGO/PC/SnO2 nanocomposite with carbon-coated SnO2 homogeneously grown on the surface of rGO using glucose as the soft templating agent delivers an initial specific discharge capacity of 2238.2 mA h g−1 and retains 1467.8 mA h g−1 after 150 cycles at 0.1C (1C = 782 mA g−1). Even at 1C after 200 cycles, the specific capacity is 618.3 mA h g−1.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450010 ◽  
Author(s):  
Linsen Zhang ◽  
Qingling Bai ◽  
Linzhen Wang ◽  
Aiqin Zhang ◽  
Yong Zhang ◽  
...  

SrWO 4/graphene composite was synthesized via a sol–gel method. The morphology and structure of the products were analyzed by SEM, TEM and XRD. The electrochemical performances of SrWO 4/graphene composite were investigated by galvanostatic charge/discharge method, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the first cycle of the reversible specific capacity of SrWO 4/graphene composite can reach to 575.9 mAh g-1 at 50 mA g-1. The charge/discharge cycling study indicates that the SrWO 4/graphene composite was provided with excellent cycle performance and outstanding rate capability.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ji Yan ◽  
Xin-Bo Chang ◽  
Xiao-Kai Ma ◽  
Heng Wang ◽  
Yong Zhang ◽  
...  

Phosphorization of metal oxides/hydoxides to promote electronic conductivity as a promising strategy has attracted enormous attention for improving the electrochemical properties of anode material in lithium ion batteries. For this article, selective phosphorization from NiCo2O4 to NiO/Ni2Co4P3 microspheres was realized as an efficient route to enhance the electrochemical lithium storage properties of bimetal Ni-Co based anode materials. The results show that varying phosphorizaed reagent amount can significantly affect the transformation of crystalline structure from NiCo2O4 to intermediate NiO, hybrid NiO/Ni2Co4P3, and, finally, to Ni2Co4P3, during which alterated sphere morphology, shifted surface valance, and enhanced lithium-ion storage behavior are detected. The optimized phosphorization with 1:3 reagent mass ratio can maintain the spherical architecture, hold hybrid crystal structure, and improve the reversibly electrochemical lithium-ion storage properties. A specific capacity of 415 mAh g−1 is achieved at 100 mA g−1 specific current and maintains at 106 mAh g−1 when the specific current increases to 5000 mA g−1. Even after 200 cycles at 500 mA g−1, the optimized electrode still delivers 224 mAh g−1 of specific capacity, exhibiting desirable cycling stability. We believe that understanding of such selective phosphorization can further evoke a particular research enthusiasm for anode materials in lithium ion battery with high performances.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 444 ◽  
Author(s):  
Kang Zhao ◽  
Hongzan Song ◽  
Xiaoli Duan ◽  
Zihao Wang ◽  
Jiahang Liu ◽  
...  

A new family of chemical cross-linked ionogel is successfully synthesized by photopolymerization of hyperbranched aliphatic polyester with acrylate terminal groups in an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). The microstructure, viscoelastic behavior, mechanical property thermal stability, and ionic conductivities of the ionogels are investigated systematically. The ionogels exhibit high mechanical strength (up to 1.6 MPa) and high mechanical stability even at temperatures up to 200 °C. It is found to be thermally stable up to 371.3 °C and electrochemically stable above 4.3 V. The obtained ionogels show superior ionic conductivity over a wide temperature range (from 1.2 × 10−3 S cm−1 at 20 °C up to 5.0 × 10−2 S cm−1 at 120 °C). Moreover, the Li/LiFePO4 batteries based on ionogel electrolyte with LiBF4 show a higher specific capacity of 153.1 mAhg−1 and retain 98.1% after 100 cycles, exhibiting very stable charge/discharge behavior with good cycle performance. This work provides a new method for fabrication of novel advanced gel polymer electrolytes for applications in lithium-ion batteries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191
Author(s):  
Junhao Li ◽  
Ningyi Jiang ◽  
Jinyun Liao ◽  
Yufa Feng ◽  
Quanbing Liu ◽  
...  

Transition metal oxide is one of the most promising anode materials for lithium-ion batteries. Generally, the electrochemical property of transition metal oxides can be improved by optimizing their element components and controlling their nano-architecture. Herein, we designed nonstoichiometric Cu0.6Ni0.4Co2O4 nanowires for high performance lithium-ion storage. It is found that the specific capacity of Cu0.6Ni0.4Co2O4 nanowires remain 880 mAh g−1 after 50 cycles, exhibiting much better electrochemical performance than CuCo2O4 and NiCo2O4. After experiencing a large current charge and discharge state, the discharge capacity of Cu0.6Ni0.4Co2O4 nanowires recovers to 780 mAh g−1 at 50 mA g−1, which is ca. 88% of the initial capacity. The high electrochemical performance of Cu0.6Ni0.4Co2O4 nanowires is related to their better electronic conductivity and synergistic effect of metals. This work may provide a new strategy for the design of multicomponent transition metal oxides as anode materials for lithium-ion batteries.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1732
Author(s):  
Dan Zhao ◽  
Qian Zhao ◽  
Zhenyu Wang ◽  
Lan Feng ◽  
Jinying Zhang ◽  
...  

Potassium-ion batteries (KIBs) have come up as a potential alternative to lithium-ion batteries due to abundant potassium storage in the crust. Red phosphorus is a promising anode material for KIBs with abundant resources and high theoretical capacity. Nevertheless, large volume expansion, low electronic conductivity, and limited K+ charging speed in red phosphorus upon cycling have severely hindered the development of red phosphorus-based anodes. To obtain improved conductivity and structural stability, surface engineering of red phosphorus is required. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated red phosphorus nanospheres (RPNP@PEDOT) with an average diameter of 60 nm were synthesized via a facile solution-phase approach. PEDOT can relieve the volume change of red phosphorus and promote electron/ion transportation during charge−discharge cycles, which is partially corroborated by our DFT calculations. A specific capacity of 402 mAh g−1 at 0.1 A g−1 after 40 cycles, and a specific capacity of 302 mAh g−1 at 0.5 A g−1 after 275 cycles, were achieved by RPNP@PEDOT anode with a high pseudocapacitive contribution of 62%. The surface–interface engineering for the organic–inorganic composite of RPNP@PEDOT provides a novel perspective for broad applications of red phosphorus-based KIBs in fast charging occasions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 678
Author(s):  
Zhongkai Wu ◽  
Haifu Huang ◽  
Wenhui Xiong ◽  
Shiming Yang ◽  
Huanhuan Huang ◽  
...  

We report a novel Ni3S2 carbon coated (denoted as NCC) rod-like structure prepared by a facile one-pot hydrothermal method and employ it as a binder free electrode in supercapacitor. We coated carbon with glucose as carbon source on the surface of samples and investigated the suitable glucose concentration. The as-obtained NCC rod-like structure demonstrated great performance with a huge specific capacity of 657 C g−1 at 1 A g−1, preeminent rate capability of 87.7% retention, the current density varying to 10 A g−1, and great cycling stability of 76.7% of its original value through 3500 cycles, which is superior to the properties of bare Ni3S2. The result presents a facile, general, viable strategy to constructing a high-performance material for the supercapacitor applications.


Author(s):  
G. S. Zakharova ◽  
E. Thauer ◽  
A. N. Enyashin ◽  
L. F. Deeg ◽  
Q. Zhu ◽  
...  

AbstractThe potential battery electrode material V2O3/C has been prepared using a sol–gel thermolysis technique, employing vanadyl hydroxide as precursor and different organic acids as both chelating agents and carbon sources. Composition and morphology of resultant materials were characterized by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies, physical sorption, and elemental analysis. Stability and electronic properties of model composites with chemically and physically integrated carbon were studied by means of quantum-chemical calculations. All fabricated composites are hierarchically structured and consist of carbon-covered microparticles assembled of polyhedral V2O3 nanograins with intrusions of amorphous carbon at the grain boundaries. Such V2O3/C phase separation is thermodynamically favored while formation of vanadium (oxy)carbides or heavily doped V2O3 is highly unlikely. When used as anode for lithium-ion batteries, the nanocomposite V2O3/C fabricated with citric acid exhibits superior electrochemical performance with an excellent cycle stability and a specific charge capacity of 335 mAh g−1 in cycle 95 at 100 mA g−1. We also find that the used carbon source has only minor effects on the materials’ electrochemical performance.


2017 ◽  
Vol 246 ◽  
pp. 43-50 ◽  
Author(s):  
Yancui Yan ◽  
Guannan Guo ◽  
Tongtao Li ◽  
Dandan Han ◽  
Jiahui Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document