scholarly journals TiOxNy Thin Film Sputtered on a Fiber Ball Lens as Saturable Absorber for Passive Q-Switched Generation of a Single-Tunable/Dual-Wavelength Er-Yb Double Clad Fiber Laser

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 923
Author(s):  
Ricardo I. Álvarez-Tamayo ◽  
Omar Gaspar-Ramírez ◽  
Patricia Prieto-Cortés ◽  
Manuel García-Méndez ◽  
Antonio Barcelata-Pinzón

The use of titanium oxynitride (TiOxNy) thin films as a saturable absorber (SA) element for generation of passive Q-switched (PQS) laser pulses, from a linear cavity Er-Yb double-clad fiber (EYDCF) laser, is demonstrated. Additionally, the deposition of the material as a thin film covering a fiber micro-ball lens (MBL) structure is reported for the first time. The TiOxNy coating is deposited by a direct current (DC) magnetron-sputtering technique. The MBL is inserted within the laser cavity in a reflection configuration, alongside a reflecting mirror. As a result, the coated fiber MBL simultaneously acts as a SA element for PQS laser pulses generation and as an interference filter for wavelength selection and tuning of the generated laser line. Tunable single-laser emission in a wavelength range limited by dual-wavelength laser generation at 1541.96 and 1547.04 nm is obtained. PQS laser pulses with a repetition rate from 18.67 to 124.04 kHz, minimum pulse duration of 3.57 µs, maximum peak power of 0.359 W, and pulse energy of 1.28 µJ were obtained in a pump power range from 1 to 1.712 W.

2018 ◽  
Vol 150 ◽  
pp. 01009
Author(s):  
Noor Azura Awang ◽  
Nor Syuhada Aziz ◽  
Atiqah Nabieha Azmi ◽  
Fatin Shaqira Hadi ◽  
Zahariah Zakaria

We demonstrated the comparison experimentally and numerically a compact Q-switched erbium-doped fiber (EDF) laser based on graphene as a saturable absorber (SA). By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Lasing in CW region starts at 10 mW, whereas stable self-starting Q-switching with a central wavelength of 1530 nm begins at 18 mW. In this paper, at 35 mW, the maximum pulse energy reaches at 2 μJ with pulse repetition rate of 1 MHz and the narrowest pulse width is around 10 μs is obtained. The stability of the pulse is verified from the radio-frequency (RF) spectrum with a measured signal-to-noise ratio (SNR) of 48 dB. In this study, the design is compared with the simulation using the Optisystem software. The output power of the experimental study is also compared with the simulation to examine the performance.


Author(s):  
Nur Hidayah Muhamad Apandi ◽  
Siti Nur Fatin Zuikafly ◽  
Nabilah Kasim ◽  
Mohd Ambri Mohamed ◽  
Sulaiman Wadi Harun ◽  
...  

In this paper, a passively Q-switched Erbium doped fiber laser (EDFL) by residing Graphene nanoplatelets (GnPs) embedded in polyvinyl alcohol (PVA) based saturable absorber (SA) is demonstrated. To aid the dispersion of GNPs, a surfactant is used and then it is mixed with polyvinyl alcohol (PVA) as host polymer to develop GnPs-PVA film based passive SA. The GnPs-PVA based film then integrated in laser cavity in ring cavity configuration for pulse laser generation. The experimental works show that the proposed passive SA operates at input pump power range from 77 mW to 128 mW with a tunable repetition rate from 78.4 kHz to 114.8 kHz and a shortest pulse width of 3.69 µs. The laser produces maximum instantaneous output peak power and pulse energy of 7.3 mW and 30.46 nJ, respectively and accompanied by signal to noise ratio (SNR) of 64 dB.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 298
Author(s):  
Yousif I. Hammadi ◽  
Tahreer S. Mansour

A passively pulsed fiber laser using saturable absorbers such as graphene has been increased dramatically in recent years. Up to now, researchers have been proposed many methods to fabricate graphene saturable absorber such as (evanescent coupling structure, electrochemical exfoliation, and mechanical exfoliation) for light pulse generation in a fiber laser. However, each of these methods has got some limitations which reduce the saturable absorber performance and restrict its range of applications. In this paper, we propose a simple but very efficient fabrication way of graphene saturable absorber by converting graphene Nano powder into a thin film using polyvinyl alcohol (PVA) as a host material. The fabricated film can then be easily sandwiched between two fiber pigtails and inserted inside the laser cavity to form the saturable absorber. when compared with other methods, this method is much preferable because it provides saturable absorber with combat structure, maximum interaction area, reasonable insertion loss, polarization insensitive, controllable concentration, and safe to handle. The fabricated graphene saturable absorber in this paper was characterized and found to have a uniform distribution of the graphene nanomaterial in the PVA and have a modulation depth of 6.1% which make it a very promising saturable absorber for ultra-fast fiber laser demonstration.  


2018 ◽  
Vol 7 (4.30) ◽  
pp. 313
Author(s):  
Noor U.H.H. Zalkepali ◽  
Noor A. Awang ◽  
Yushazlina R. Yuzaile ◽  
Amirah A . Latif ◽  
Fauzan Ahmad ◽  
...  

This paper demonstrates on an antimony telluride (Sb2Te3) thin film sandwiched between two fiber ferrule as saturable absorber for Q-switched pulsed Erbium doped fiber (EDF) laser. The saturable absorber is fabricated by dissolving Antimony (III) Telluride powder into PVA solution and dry in the ambient temperature for 48 hours. Then, 1 mm2 x 1 mm2 Sb2Te3-PVA film based saturable absorber is sandwiched in between FC/PC ferrule for Q-switched laser generation. The modulation depth of the Sb2Te3 is measured as 28.01% with input intensity 0.02 MW/cm2. The developed passive saturable absorber integrated in EDF laser in ring cavity and the characterised pulse is with repetition rates of 30.21 kHz, shortest pulse width of 3.26 µs and signal-noise-ratio (SNR) of 42 dB. The maximum output pulse energy is achieved at pump power 69.5 mW with 29.5 nJ and the output power 0.89 mW.


2021 ◽  
Vol 13 (3) ◽  
pp. 55
Author(s):  
Nabihah Hussain ◽  
Mohd Rashidi Salim ◽  
Asrul Izam Azmi ◽  
Muhammad Yusof Mohd Noor ◽  
Ahmad Sharmi Abdullah ◽  
...  

This paper explains about the performance of graphene nanopowder (GNP) based saturable absorber (SA) at 1.5-micron region which is prepared by dissolution in polyvinyl alcohol (PVA) polymer. Two different GNP flakes thickness (AO2-8 nm and AO4-60 nm) are tested. By applying a solution casting method, three weight ratio of GNP to PVA (12.04, 8.03 and 3.11 wt.%) have been prepared and fabricated as a composite thin film. To characterize for the SA performance, 4 mm2 area of GNP-PVA thin film is embedded in a 14 meters long ring cavity with 3 meters Erbium doped fiber (EDF) as a gain medium. Our characterization results show that the GNP-PVA thin film act as a Q-switcher which produce stable laser pulses for 12.04 wt.% with maximum repetition rate of 39.22 kHz and shortest pulse width of 11.79 µs. Meanwhile, unstable Q-switched pulses of 8.03 wt.% and 3.11 wt.% have been observed with recorded signal to noise ratio (SNR) of only 21 dB and 17 dB, respectively. The threshold pumping power for Q-switched lasing to emerge is recorded as low as 30 mW. Apparently, it shows that GNP concentration and flakes thickness in fabricated SA composite plays vital role in the performance of generated Q-switch laser, particularly at 1.5 µm region. Full Text: PDF ReferencesT. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P.H. Tan, A.G. Rozhin, A.C. Ferrari, "Nanotube–Polymer Composites for Ultrafast Photonics", Adv. Mater. 21, 3874 (2009). CrossRef Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, "Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers", Adv. Funct. Mater. 19, 3077 (2009). CrossRef Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, Opt. Lett. 35(21), 3709 (2010). CrossRef D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A.C. Ferrari, "Graphene Q-switched, tunable fiber laser", Appl. Phys. Lett. 98, 3106 (2011). CrossRef Y.M. Chang, H. Kim, J.H. Lee, Y. Song, "Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers", Appl. Phys. Lett. 97, 211102 (2010). CrossRef M. Jiang, Z. Ren, Y. Zhang, B. Lu, R. Zhang, J. Guo, Y. Zhou, J. Bai, "Passive Q-Switching with Graphene Saturable Absorber in Nd:YAG Operating at 1064nm", Mater. Sci. Forum 694, 700 (2011). CrossRef N. Hussin, M.H. Ibrahim, F. Ahmad, H. Yahaya, S.W. Harun, "Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber", Telkomnika 15(2), 814 (2017). CrossRef F.C. Mat, M. Yasin, A.A. Latiff, S.W. Harun, Photonics Letters of Poland 9, 100 (2017). CrossRef E.K. Ng, K.Y. Lau, H.K. Lee, N.M. Yusoff, A.R. Sarmani, M.F. Omar, M.A. Mahdi, "L-band femtosecond fiber laser based on a reduced graphene oxide polymer composite saturable absorber", Opt. Mater. Express 11, 59 (2021). CrossRef N.H.M. Apandi, S.N.F. Zuikafly, N. Kasim, M.A. Mohamed, S.W. Harun, F. Ahmad, "Observation of dark and bright pulses in q-switched erbium doped fiber laser using graphene nano-platelets as saturable absorber", Bull. Electr. Eng. Inform. 8, 1358 (2019). CrossRef N.U.H.H.B. Zalkepali, N.A. Awang, Y.R. Yuzaile, Z. Zakaria, A.A. Latif and F. Ahmad, "Graphene Nanoplatelets as Saturable Absorber for Mode-locked Fiber Laser Generation", J. Adv. Res. Dyn. Control Syst. 12(2), 602 (2020). CrossRef X. Zhu and S. Chen, "Autoencoder-Based Transceiver Design for OWC Systems in Log-Normal Fading Channel", IEEE Photonics J. 11, 7105109 (2019). CrossRef


2019 ◽  
Vol 125 (24) ◽  
pp. 243104 ◽  
Author(s):  
Shi Li ◽  
Yu Yin ◽  
Guicang Ran ◽  
Qiuyun Ouyang ◽  
Yujin Chen ◽  
...  

2019 ◽  
Vol 48 (6) ◽  
pp. 1289-1294 ◽  
Author(s):  
Muhammad Aizi Mat Salim ◽  
Mohd Zulhakimi Ab Razak ◽  
Saaidal Razalli Azzuhri ◽  
Mohd Afiq Ismail ◽  
Fauzan Ahmad ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 436-441
Author(s):  
M.A. Buntat ◽  
A.H.A. Rosol ◽  
M.F.M. Rusdi ◽  
A.A. Latif ◽  
M. Yasin ◽  
...  

2001 ◽  
Vol 11 (PR2) ◽  
pp. Pr2-39-Pr2-42 ◽  
Author(s):  
M. Kado ◽  
T. Kawachi ◽  
N. Hasegawa ◽  
M. Tanaka ◽  
K. Sukegawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document