scholarly journals Insight into the Ex Situ Catalytic Pyrolysis of Biomass over Char Supported Metals Catalyst: Syngas Production and Tar Decomposition

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1397 ◽  
Author(s):  
Mian Hu ◽  
Baihui Cui ◽  
Bo Xiao ◽  
Shiyi Luo ◽  
Dabin Guo

Ex situ catalytic pyrolysis of biomass using char-supported nanoparticles metals (Fe and Ni) catalyst for syngas production and tar decomposition was investigated. The characterizations of fresh Fe-Ni/char catalysts were determined by TGA, SEM–EDS, Brunauer–Emmett–Teller (BET), and XPS. The results indicated that nanoparticles metal substances (Fe and Ni) successfully impregnated into the char support and increased the thermal stability of Fe-Ni/char. Fe-Ni/char catalyst exhibited relatively superior catalytic performance, where the syngas yield and the molar ratio of H2/CO were 0.91 Nm3/kg biomass and 1.64, respectively. Moreover, the lowest tar yield (43.21 g/kg biomass) and the highest tar catalytic conversion efficiency (84.97 wt.%) were also obtained under the condition of Ni/char. Ultimate analysis and GC–MS were employed to analyze the characterization of tar, and the results indicated that the percentage of aromatic hydrocarbons appreciably increased with the significantly decrease in oxygenated compounds and nitrogenous compounds, especially in Fe-Ni/char catalyst, when compared with no catalyst pyrolysis. After catalytic pyrolysis, XPS was employed to investigate the surface valence states of the characteristic elements in the catalysts. The results indicated that the metallic oxides (MexOy) were reduced to metallic Me0 as active sites for tar catalytic pyrolysis. The main reactions pathway involved during ex situ catalytic pyrolysis of biomass based on char-supported catalyst was proposed. These findings indicate that char has the potential to be used as an efficient and low-cost catalyst toward biomass pyrolysis for syngas production and tar decomposition.

2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Hui Jin ◽  
Bin Chen ◽  
Xiao Zhao ◽  
Changqing Cao

Supercritical water gasification (SCWG) is an efficient and clean conversion of biomass due to the unique chemical and physical properties. Anthracene and furfural are the key intermediates in SCWG, and their microscopic reaction mechanism in supercritical water may provide information for reactor optimization and selection of optimal operating condition. Density functional theory (DFT) and reactive empirical force fields (ReaxFF) were combined to investigate the molecular dynamics of catalytic gasification of anthracene and furfural. The simulation results showed that Cu and Ni obviously increased the production of H radicals, therefore the substance SCWG process. Ni catalyst decreased the production of H2 with the residence time of 500 ps while significantly increased CO production and finally increased the syngas production. Ni catalyst was proved to decrease the free carbon production to prohibit the carbon deposition on the surface of active sites; meanwhile, Cu catalyst increased the production of free carbon.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8286-8305
Author(s):  
Yunwu Zheng ◽  
Lei Tao ◽  
Xiaoqin Yang ◽  
Yuanbo Huang ◽  
Can Liu ◽  
...  

To investigate the effects of acidity on aromatic yield and selectivity during the catalytic pyrolysis of biomass, the silica to alumina ratio (SAR), as well as the amount and addition method of HZSM-5 catalyst were varied. The results showed that with an increase in the SAR, the pore volume was reduced, the average pore diameter of the HZSM-5 catalyst increased, and the total acidity and catalytic activity decreased. Meanwhile, the increase in acidity led to an increased non-condensable gases yield, which was associated with a decrease in the bio-oil yield. The calorific value and moisture content increased, and the ability of deoxygenation was enhanced. The single ring aromatic hydrocarbons (BTXE) content increased, and the polycyclic aromatic hydrocarbons (2-ring, 3-ring) content decreased noticeably. The selectivity of BTXE decreased substantially from 69 wt.% to 6.85 wt.%, while the selectivity of naphthalene and its derivatives increased remarkably, as the SAR increased. Additionally, the acidity increased the selectivity of unsubstituted aromatic compounds, but decreased the selectivity of substituted aromatic compounds. Moreover, ex situ catalytic pyrolysis more effectively enhanced the aromatic hydrocarbon yield and selectivity (69 wt.%) compared with in situ catalytic pyrolysis (27.51 wt.%), and in situ catalytic pyrolysis generated more polyaromatics and solid residue.


2020 ◽  
Vol 4 (3) ◽  
pp. 1084-1087 ◽  
Author(s):  
Yayun Zhang ◽  
Dengle Duan ◽  
Hanwu Lei ◽  
Chenxi Wang ◽  
Moriko Qian ◽  
...  

A carbon catalyst, which was derived from nanocellulose (NC) and doped with uniform sized and well dispersed metal nanoparticles, showed optimal performance for the generation of H2-enriched (67.4 vol%) syngas from the catalytic pyrolysis of biomass.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120212
Author(s):  
Yuchun Zhang ◽  
Peng Fu ◽  
Weiming Yi ◽  
Zhihe Li ◽  
Zhiyu Li ◽  
...  

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2293-2309
Author(s):  
Kui Lan ◽  
Zhenhua Qin ◽  
Zeshan Li ◽  
Rui Hu ◽  
Xianzhou Xu ◽  
...  

Ni-xLa/Al2O3-MgO-sawdust char catalysts were prepared by modifying the Ni/Al2O3 catalyst from two aspects of support and active components. The effect of Al2O3, MgO, sawdust char molar ratio, and La content of catalysts on syngas (H2 + CO) production in the catalytic pyrolysis of rice straw was investigated in a horizontal fixed-bed quartz tube reactor. Furthermore, the stability of catalysts with the optimum catalytic performance was tested and compared with that of the Ni/Al2O3 catalysts. X-ray diffraction, X-ray fluorescence, field emission scanning electron microscopy, energy disperse X-ray, and Brunauer-Emmett-Teller analyses were applied to understand the physiochemical properties of the supports and catalysts. The study revealed that the supports were composed of many irregular flaky particles and thus formed many pores. Moreover, the addition of La decreased the particle size of NiAl2O4 and increased the active metal surface of the Ni/Al2O3-MgO-sawdust catalysts. When the molar ratio of Al2O3, MgO, and sawdust char was 1:1:1 and the La content was 10 wt% (dry weight basis), the catalysts presented the highest syngas concentration of 78.9 vol% and the most stable performance during the catalytic pyrolysis process.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
Author(s):  
Ze Wang ◽  
Siwei Liu ◽  
Weigang Lin ◽  
Wenli Song

Fuel ◽  
2020 ◽  
Vol 279 ◽  
pp. 118500 ◽  
Author(s):  
Qiuxiang Lu ◽  
Shenfu Yuan ◽  
Chunxiang Liu ◽  
Tao Zhang ◽  
Xiaoguang Xie ◽  
...  

Fuel ◽  
2019 ◽  
Vol 246 ◽  
pp. 408-416 ◽  
Author(s):  
Haftom Weldekidan ◽  
Vladimir Strezov ◽  
Tao Kan ◽  
Ravinder Kumar ◽  
Jing He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document