scholarly journals Integrated Source of Path-Entangled Photon Pairs with Efficient Pump Self-Rejection

Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1952
Author(s):  
Pablo de la Hoz ◽  
Anton Sakovich ◽  
Alexander Mikhalychev ◽  
Matthew Thornton ◽  
Natalia Korolkova ◽  
...  

We present a theoretical proposal for an integrated four-wave mixing source of narrow-band path-entangled photon pairs with efficient spatial pump self-rejection. The scheme is based on correlated loss in a system of waveguides in Kerr nonlinear media. We calculate that this setup gives the possibility for upwards of 100 dB pump rejection, without additional filtering. The effect is reached by driving the symmetric collective mode that is strongly attenuated by an engineered dissipation, while photon pairs are born in the antisymmetric mode. A similar set-up can additionally be realized for the generation of two-photon NOON states, also with pump self-rejection. We discuss the implementation of the scheme by means of the coherent diffusive photonics, and demostrate its feasibility in both glass (such as fused silica-glass and IG2) and planar semiconductor waveguide structures in indium phosphide (InP) and in silicon.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Sören Wengerowsky ◽  
Siddarth Koduru Joshi ◽  
Fabian Steinlechner ◽  
Julien R. Zichi ◽  
Bo Liu ◽  
...  

AbstractQuantum key distribution (QKD) based on entangled photon pairs holds the potential for repeater-based quantum networks connecting clients over long distance. We demonstrate long-distance entanglement distribution by means of polarisation-entangled photon pairs through two successive deployed 96 km-long telecommunications fibres in the same submarine cable. One photon of each pair was detected directly after the source, while the other travelled the fibre cable in both directions for a total distance of 192 km and attenuation of 48 dB. The observed two-photon Bell state exhibited a fidelity 85 ± 2% and was stable over several hours. We employed neither active stabilisation of the quantum state nor chromatic dispersion compensation for the fibre.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Tiemo Landes ◽  
Markus Allgaier ◽  
Sofiane Merkouche ◽  
Brian J. Smith ◽  
Andrew H. Marcus ◽  
...  

2005 ◽  
Vol 290 ◽  
pp. 31-38 ◽  
Author(s):  
V. Le Houérou ◽  
J.-C. Sanglebœuf ◽  
Tanguy Rouxel

Grinding and polishing are widely used for glass machining with fine finished surfaces. These processes result from abrasion due to repeated contacts between hard sliding particles and the glass surface. The study of contact mechanics problem is of fundamental interest to understand the process of material removal in glasses. In order to get insight into this problem, an experimental set up was designed which allows a monotonic loading of the indenter combined with a controlled sliding of the specimen to simulate a slow abrasive machining process. In addition, the experiments are conducted with an in-situ video monitoring that allows for the observation of the different fracture phenomena beneath the indenter. Fracture surfaces were also studied using SEM and AFM for multi-scale investigation. Fracture analysis was carried on a standard float glass, four different SLS glasses and a fused silica glass. The observed phenomena were discussed in the light of the influence of the normal load and the chemical composition.


2021 ◽  
pp. 2006341
Author(s):  
Frederik Kotz ◽  
Alexander S. Quick ◽  
Patrick Risch ◽  
Tanja Martin ◽  
Tobias Hoose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document