scholarly journals High-Performance Asymmetric Optical Transmission Based on a Dielectric–Metal Metasurface

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2410
Author(s):  
Wenbing Liu ◽  
Lirong Huang ◽  
Jifei Ding ◽  
Chenkai Xie ◽  
Yi Luo ◽  
...  

Asymmetric optical transmission plays a key role in many optical systems. In this work, we propose and numerically demonstrate a dielectric–metal metasurface that can achieve high-performance asymmetric transmission for linearly polarized light in the near-infrared region. Most notably, it supports a forward transmittance peak (with a transmittance of 0.70) and a backward transmittance dip (with a transmittance of 0.07) at the same wavelength of 922 nm, which significantly enhances operation bandwidth and the contrast ratio between forward and backward transmittances. Mechanism analyses reveal that the forward transmittance peak is caused by the unidirectional excitation of surface plasmon polaritons and the first Kerker condition, whereas the backward transmittance dip is due to reflection from the metal film and a strong toroidal dipole response. Our work provides an alternative and simple way to obtain high-performance asymmetric transmission devices.

RSC Advances ◽  
2018 ◽  
Vol 8 (67) ◽  
pp. 38556-38561 ◽  
Author(s):  
Ying-Hua Wang ◽  
Inki Kim ◽  
Ren-Chao Jin ◽  
Heonyeong Jeong ◽  
Jia-Qi Li ◽  
...  

A bi-layer continuous omega-shaped metamaterial was proposed and fabricated to measure the asymmetric transmission (AT) effect of a linearly polarized light at near-infrared region.


2020 ◽  
Author(s):  
Mikhail Shalaginov ◽  
Sensong An ◽  
Yifei Zhang ◽  
Fan Yang ◽  
Peter Su ◽  
...  

Abstract Active metasurfaces, whose optical properties can be modulated post-fabrication, have emerged as an intensively explored field in recent years. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency especially for non mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles and propose a new figure-of-merit tailored for active meta-optics. We implement the approach to realize a high-performance varifocal metalens operating at 5.2 μm wavelength. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast (Δn > 1) and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio of 29.5 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Çağlar Çetinkaya ◽  
Erman Çokduygulular ◽  
Barış Kınacı ◽  
Feyza Güzelçimen ◽  
Yunus Özen ◽  
...  

AbstractWe conducted the present study to design and manufacture a semi-transparent organic solar cell (ST-OSC). First, we formed a transparent top contact as MoO3/Ag/MoO3 in a dielectric/metal/dielectric (DMD) structure. We performed the production of an FTO/ZnO/P3HT:PCBM/MoO3/Ag/MoO3 ST-OSC by integrating MoO3/Ag/MoO3 (10/$$d_{m}$$ d m /$$d_{{od}}$$ d od nm) instead of an Ag electrode in an opaque FTO/ZnO/P3HT:PCBM/MoO3/Ag (–/40/130/10/100 nm) OSC, after theoretically achieving optimal values of optical and electrical parameters depending on Ag layer thickness. The transparency decreased with the increase of $$d_{m}$$ d m values for current DMD. Meanwhile, maximum transmittance and average visible transmittance (AVT) indicated the maximum values of over 92% for $$d_{m} ~$$ d m  = 4 and 8 nm, respectively. For ST-OSCs, the absorption and reflectance increased in the visible region by a wavelength of longer than 560 nm and in the whole near-infrared region by increasing $$d_{m}$$ d m up to 16 nm. Moreover, in the CIE chromaticity diagram, we reported a shift towards the D65 Planckian locus for colour coordinates of current ST-OSCs. Electrical analysis indicated the photogenerated current density and AVT values for $$d_{m} = 6$$ d m = 6  nm as 63.30 mA/cm2 and 38.52%, respectively. Thus, the theoretical and experimental comparison of optical and electrical characteristics confirmed that the manufactured structure is potentially conducive for a high-performance ST-OSC.


2009 ◽  
Vol 1173 ◽  
Author(s):  
Kazuma Tsuboi ◽  
Hidetoshi Matsumoto ◽  
Mie Minagawa ◽  
Akihiko Tanioka

AbstractIn this paper we report new excitation method of surface plasmon polariton (SPP) at air/gold interface with electrospun nanofibers. Nanofibers of polyvinylpirrolidone were electrospun onto the surface of a gold film. The observations by scanning electron microscopy and optical microscopy indicated that the average diameters of the nanofibers were about 300 nm and average sizes of pores were about 30-40 μm. Optical response of the nanofibers on gold surface was investigated by polarized reflection absorption spectroscopy (RAS). The RAS spectrum with p-polarized light showed two absorption bands while the spectrum with s-polarized light only one band. One is a band at about 520 nm that also found in the spectrum with s-polarized light. Another is a broad band in the near-infrared region which found only with p-polarized light. The peak intensity of the latter band increases with increase of incident angle of the polarized light and the peak wavelength of the band shifted to longer wavelength. These responses suggested that SPP at air/gold interface was excited with the scattering light from the electrospun nanofibers. We also found that the peak wavelength of the absorption band in near-infrared region changed with the increase of the amount of the nanofibers. This may be due to the fact that the sizes of the pores on gold surface became smaller than the propagation length of SPP, which resulted in scattering and interference of SPP.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3235-3242 ◽  
Author(s):  
Tingting Lv ◽  
Xieyu Chen ◽  
Guohua Dong ◽  
Meng Liu ◽  
Dongming Liu ◽  
...  

AbstractPolarization conversion dichroism is of particular interest in manipulating the polarization state of light, whereas high-performance asymmetric transmission (AT) of linearly polarized waves is still inaccessible in the terahertz range. Here, a bilayer chiral metamaterial consisting of orthogonally chained S-shaped patterns with broken symmetry along the light propagation direction is proposed and demonstrated experimentally to realize a dual-band dichroic AT effect for linearly polarized terahertz waves. The AT effects are robust across a wide range of incident angles. The observed strong AT can be theoretically explained by a multiple reflection and transmission interference model and the transfer matrix method. The proposed bilayer chiral metamaterial may have broad applications in polarization manipulation, chiral biosensing and direction-dependent information processing.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 73 ◽  
Author(s):  
Tian-Ge Sun ◽  
Zhi-Juan Li ◽  
Jiang-Yang Shao ◽  
Yu-Wu Zhong

Two star-shaped multi-triphenylamine derivatives 1 and 2 were prepared, where 2 has an additional phenyl unit between a pyrene core and surrounding triphenylamine units. The oxidative electropolymerization of 1 and 2 occurred smoothly to give thin films of polymers P1 and P2. The electrochemistry and spectroelectrochemistry of P1 and P2 were examined, showing two-step absorption spectral changes in the near-infrared region. The electrochromic properties, including contrast ratio, response time, and cyclic stability of P1 and P2 were investigated and compared. Thin film of P2 displays slightly better electrochromic performance than P1, with a contrast ratio of 45% at 1475 nm being achieved.


Sign in / Sign up

Export Citation Format

Share Document