scholarly journals Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3449
Author(s):  
Jianguang Xu ◽  
Qiang Wang ◽  
Boman Li ◽  
Wei Yao ◽  
Meng He

Herein we report that novel two-dimensional (2D) Ti3Si0.75Al0.25C2 (TSAC) nanosheets, obtained by sonically exfoliating their bulk counterpart in alcohol, performs promising electrochemical activities in a reversible lithiation and delithiation procedure. The as-exfoliated 2D TSAC nanosheets show significantly enhanced lithium-ion uptake capability in comparison with their bulk counterpart, with a high capacity of ≈350 mAh g−1 at 200 mA g−1, high cycling stability and excellent rate performance (150 mAh g−1 after 200 cycles at 8000 mA g−1). The enhanced electrochemical performance of TSAC nanosheets is mainly a result of their fast Li-ion transport, large surface area and small charge transfer resistance. The discovery in this work highlights the uniqueness of a family of 2D layered MAX materials, such as Ti3GeC2, Ti3SnC2 and Ti2SC, which will likely be the promising choices as anode materials for lithium-ion batteries (LIBs).

2020 ◽  
Vol 5 (11) ◽  
pp. 1453-1466
Author(s):  
Zhen-Kun Tang ◽  
Yu-Feng Xue ◽  
Gilberto Teobaldi ◽  
Li-Min Liu

Oxygen vacancies can promote Li-ion diffusion, reduce the charge transfer resistance, and improve the capacity and rate performance of Li-ion batteries. However, oxygen vacancies can also lead to accelerated degradation of the cathode material structure, and lead to phase transition etc.


2018 ◽  
Vol 42 (23) ◽  
pp. 18569-18577 ◽  
Author(s):  
Shivaraj B. Patil ◽  
Udayabhanu Udayabhanu ◽  
Brij Kishore ◽  
G. Nagaraju ◽  
Jairton Dupont

rGO wrapped MoO3 NPs were successfully synthesized via simple and scalable steps as potential anode materials for Li-ion batteries.


Author(s):  
Liguo Zhang ◽  
Yu Litao ◽  
Oi Lun Li ◽  
Si-Young Choi ◽  
Ghuzanfar Saeed ◽  
...  

There is an increasing demand for current and future applications to obtain charge storage devices with both energy and power superiority. Recently, several high-rate pseudocapacitive anode materials in Li-ion batteries...


Nanoscale ◽  
2021 ◽  
Author(s):  
Jianwei Zhang ◽  
Danyang Huang ◽  
Yuchen Wang ◽  
Liang Chang ◽  
Yanying Yu ◽  
...  

Low ion migration rate and irreversible change in the valence state in transition-metal oxides limited their application as anode materials in Li-ion batteries (LIBs). Interfacial optimization by loading metal particles...


2018 ◽  
Vol 42 (18) ◽  
pp. 15340-15345 ◽  
Author(s):  
Haoliang Xue ◽  
Jie Wang ◽  
Shanshan Wang ◽  
Sohail Muhammad ◽  
Caihong Feng ◽  
...  

High-capacity lithium-ion battery anode materials of transition metal dichalcogenides often suffer from large volume expansion during lithiation, which causes capacity decay.


2021 ◽  
Author(s):  
Zhifang Yang ◽  
Wenliang li ◽  
Jingping Zhang

Abstract It is urgent to explore high-capacity and efficient anode materials for rechargeable lithium-ion batteries (LIB). For borophene and phosphorene, two configurations are considered to form a heterojunction: twist angles of 0º (I) and 90º (II). There is a less degree of mismatch and larger formation energy in the formation of a B/P heterojunction, implying that borophene and phosphorene form the stable heterojunction. The heterojunctions of these two configurations demonstrate good conductivity, and the electrons near the Fermi level are mainly provided by borophene. Very importantly, the low energy barrier for interlayer migration of Li is observed in configuration I (0.14eV) and II (0.06 eV), and the migration of Li on the borophene and phosphorene side of the heterojunction still maintains its original energy barrier in bare monolayer. Moreover, the two configurations show the theoretical capacity as high as 738.69 and 721.86 mA h g-1, respectively, which is comparable to bare phosphorene. Furthermore, compared with bare phosphorene, the average voltage is greatly reduced after the formation of heterojunction. Hence, the overall electrochemical properties of the B/P heterojunction have been enhanced by combining the advantages of the individual phosphorene and borophene monolayers, which guarantees the B/P heterojunction as a good candidate for the anode material used in Li-ion batteries.


2014 ◽  
Vol 2 (19) ◽  
pp. 6870-6878 ◽  
Author(s):  
Jinlong Yang ◽  
Xiaochun Kang ◽  
Lin Hu ◽  
Xue Gong ◽  
Shichun Mu

The nanocrystalline-Li2FeSiO4 with carbon frameworks, possessing high-capacity and high-rate performance, is a promising next-generation cathode material for high-power lithium-ion batteries.


2015 ◽  
Vol 51 (3) ◽  
pp. 507-510 ◽  
Author(s):  
Mengmeng Zhen ◽  
Shengqi Guo ◽  
Guandao Gao ◽  
Zhen Zhou ◽  
Lu Liu

TiO2–B nanorods combined with 2D RGO nanosheets presented a good high-rate performance for lithium ion batteries.


RSC Advances ◽  
2021 ◽  
Vol 11 (61) ◽  
pp. 38796-38803
Author(s):  
Yuhua Yang ◽  
Yecheng Dong ◽  
Ziwei Zhang ◽  
Zhichao Xi ◽  
Junhuai Xiang ◽  
...  

Long life, high capacity, environmental friendliness and good rate performance are the most important elements in the research of lithium ion batteries (LIBs).


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20386-20389 ◽  
Author(s):  
Chongchong Zhao ◽  
Cai Shen ◽  
Weiqiang Han

Metal organic nanofibers (MONFs) synthesized from precursors of amino acid and copper nitrate were applied as anode materials for Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document