scholarly journals Facile Synthesis of β-Lactoglobulin-Functionalized Reduced Graphene Oxide and Trimetallic PtAuPd Nanocomposite for Electrochemical Sensing

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 724 ◽  
Author(s):  
Bingkai Han ◽  
Meixin Pan ◽  
Jiexin Zhou ◽  
Yingying Wang ◽  
Zihua Wang ◽  
...  

The use of graphene has leapt forward the materials field and the functional modification of graphene has not stopped. In this work, β-lactoglobulin (BLG) was used to functionalize reduced graphene oxide (RGO) based on its amphiphilic properties. Also, trimetallic PtAuPd nanoparticles were reduced to the surface of BLG-functionalized RGO and formed BLG-PtAuPd-RGO nanocomposite using facile synthesis. Transmission electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectra were used to characterize the nanocomposite. Electrocatalytic analysis was evaluated through cyclic voltammetry and chronoamperometry methods. We developed a glucose sensor by fabricating GOD-BLG-PtAuPd-RGO/glassy carbon (GC) electrode. It presented a remarkable sensitivity of 63.29 μA mM−1 cm−2 (4.43 μA mM−1), a wider linear range from 0.005 to 9 mM and a lower detection limit of 0.13 μM (S/N = 3). Additionally, the glucose sensor exhibited excellent testing capability in human serum samples.

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1356 ◽  
Author(s):  
Xue Nie ◽  
Rui Zhang ◽  
Zheng Tang ◽  
Haiyan Wang ◽  
Peihong Deng ◽  
...  

In this paper, CeO2 nanoparticles were synthesized by the solvothermal method and dispersed uniformly in graphene oxide (GO) aqueous solution by ultrasonication. The homogeneous CeO2-GO dispersion was coated on the surface of a glassy carbon electrode (GCE), and the CeO2/electrochemically reduced graphene oxide modified electrode (CeO2/ERGO/GCE) was obtained by potentiostatic reduction. The results of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) showed that CeO2 nanocrystals were uniformly coated by gossamer like ERGO nanosheets. The electrochemical behavior of vanillin on the CeO2/ERGO/GCE was studied by cyclic voltammetry (CV). It was found that the CeO2/ERGO/GCE has high electrocatalytic activity and good electrochemical performance for vanillin oxidation. Using the second derivative linear sweep voltammetry (SDLSV), the CeO2/ERGO/GCE provides a wide range of 0.04–20 µM and 20 µM–100 µM for vanillin detection, and the detection limit is estimated to be 0.01 µM after 120 s accumulation. This method has been successfully applied to the vanillin detection in some commercial foods.


2018 ◽  
Vol 5 (8) ◽  
pp. 180613 ◽  
Author(s):  
Haijin Liu ◽  
Peiyao Li ◽  
Haokun Bai ◽  
Cuiwei Du ◽  
Dandan Wei ◽  
...  

Anatase TiO 2 with {001} facets is much more active than that with {101} facets, which has been verified via experiments and theoretical calculations. Graphene has garnered much attention since it was initially synthesized, due to its unique properties. In this study, reduced graphene oxide (RGO)/{001} faceted TiO 2 composites were fabricated via a solvothermal method. The composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectrophotometry, photoluminescence and Raman analysis. The results revealed that the graphene oxide was reduced during the preparation process of the {001} faceted TiO 2 , and combined with the surface of {001} TiO 2 . The photocatalytic activities of the composites were evaluated through the degradation of basic violet, under both white light ( λ > 390 nm) and visible light ( λ = 420 nm) irradiation. The results indicated that the photocatalytic activities of the {001} faceted TiO 2 were significantly improved following the incorporation of RGO, particularly under visible light irradiation. Theoretical calculations showed that the band structure of the {001} faceted TiO 2 was modified via graphene hybridization, where the separation of photoinduced electron–hole pairs was promoted; thus, the photocatalytic activity was enhanced.


2013 ◽  
Vol 112 ◽  
pp. 127-132 ◽  
Author(s):  
Qian-Li Zhang ◽  
Tian-Qi Xu ◽  
Jie Wei ◽  
Jian-Rong Chen ◽  
Ai-Jun Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 687 ◽  
Author(s):  
Anton Smirnov ◽  
Nestor Washington Solís Pinargote ◽  
Nikita Peretyagin ◽  
Yuri Pristinskiy ◽  
Pavel Peretyagin ◽  
...  

In this work, we report an available technique for the effective reduction of graphene oxide (GO) and the fabrication of nanostructured zirconia reduced graphene oxide powder via a hydrothermal method. Characterization of the obtained nano-hybrid structure materials was carried out using a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The confirmation that GO was reduced and the uniform distribution of zirconia nanoparticles on graphene oxide sheets during synthesis was obtained due to these techniques. This has presented new opportunities and prospects to use this uncomplicated and inexpensive technique for the development of zirconia/graphene nanocomposite powders.


Sign in / Sign up

Export Citation Format

Share Document