scholarly journals Improved Laser Damage Threshold of In2Se3 Saturable Absorber by PVD for High-Power Mode-Locked Er-Doped Fiber Laser

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1216 ◽  
Author(s):  
Han ◽  
Zhang ◽  
Jiang ◽  
Zhang ◽  
Li ◽  
...  

In this study, a double-end pumped high-power passively mode-locked erbium-doped fiber laser (EDFL) was realized by employing a few-layered In2Se3 flakes as a saturable absorber (SA). Herein, the uniform large-scale In2Se3 flakes were synthesized by the physical vapor deposition (PVD) method. The PVD-In2Se3 SA exhibited a remarkable damage threshold of higher than 24 mJ/cm2. Meanwhile, the PVD-In2Se3 SA had a modulation depth and saturable intensity of 18.75% and 6.8 MW/cm2, respectively. Based on the In2Se3 SA, the stable bright pulses emitting at 1559.4 nm with an average output power/pulse energy/pulse duration of 122.4 mW/5.8 nJ/14.4 ns were obtained successfully. To our knowledge, 122.4 mW was the new major breakthrough of mode-locked Er-doped fiber lasers. In addition, this is the first demonstration of the dark-bright pulse pair generation based on In2Se3 SA. The maximum average output power of the dark-bright pulse reached 121.2 mW, which also showed significant enhancement in comparison with previous works. Our excellent experiment results fully prove the superiority of our experimental design scheme and indicate that the PVD-In2Se3 could operate as a promising highly-nonlinear photonic material for a high-power fiber laser.

2019 ◽  
Vol 11 (5) ◽  
pp. 1-12
Author(s):  
Pengfei Ma ◽  
Wei Lin ◽  
Huanian Zhang ◽  
Shanhui Xu ◽  
Zhongmin Yang

2015 ◽  
Vol 24 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Haitao Huang ◽  
Deyuan Shen ◽  
Jian Zhang ◽  
Dingyuan Tang

A fiber laser resonantly pumped Q-switched mode locked Er :YAG ceramic 1645 nm laser using graphene as the saturable absorber is realized. The mode-locked pulses with average output power of 320 mW, Q-switching envelope temporal width of 10 μs and mode-locking repetition rate of 83 MHz can readily be generated from the laser. To the best of our knowledge, this is the first report on the graphene-based Q-switching mode locked Er :YAG ceramic laser emitting around 1645 nm.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qin Wei ◽  
Xile Han ◽  
Huanian Zhang ◽  
Chonghui Li ◽  
Chao Zhang ◽  
...  

The output power in ultrafast fiber lasers is usually limited due to the lack of a versatile saturable absorber with high damage threshold and large modulation depth. Here we proposed a more efficient strategy to improve the output energy of erbium-doped fiber laser based on indium selenide (In2Se3) prepared by using the physical vapor deposition (PVD) method. Finally, stable mode-locked bright pulses and triple-wavelength dark–bright pulse pair generation were obtained successfully by adjusting the polarization state. The average output power and pulse energy were 172.4 mW/101 nJ and 171.3 mW/100 nJ, which are significantly improved compared with the previous work. These data demonstrate that the PVD-In2Se3 can be a feasible nonlinear photonic material for high-power fiber lasers, which will pave a fresh avenue for the high-power fiber laser.


2014 ◽  
Author(s):  
Valentin Gapontsev ◽  
Alexey Avdokhin ◽  
Pankaj Kadwani ◽  
Igor Samartsev ◽  
Nikolai Platonov ◽  
...  

2009 ◽  
Vol 6 (6) ◽  
pp. 461-464 ◽  
Author(s):  
Y.X. Wang ◽  
D.Z. Yang ◽  
P.P. Jiang ◽  
Y.H. Shen

2014 ◽  
Vol 22 (20) ◽  
pp. 24384 ◽  
Author(s):  
Kun Liu ◽  
Jiang Liu ◽  
Hongxing Shi ◽  
Fangzhou Tan ◽  
Pu Wang

2015 ◽  
Vol 40 (7) ◽  
pp. 1464 ◽  
Author(s):  
Christian Kneis ◽  
Brenda Donelan ◽  
Antoine Berrou ◽  
Inka Manek-Hönninger ◽  
Thierry Robin ◽  
...  

1997 ◽  
Vol 484 ◽  
Author(s):  
B. H. Yang ◽  
D. Zhang ◽  
Rui. Q. Yang ◽  
C.-H. Lin ◽  
S. J. Murry ◽  
...  

AbstractWe have demonstrated 4-μm InAs/InGaSb/AlSb interband cascade lasers with optical output power close to 0.5 W per facet with 1-μs pulses at 1 kHz repetition rate. At 10% duty cycle, an average output power ∼20 mW was realized. External and internal quantum efficiencies exceeding 200% have been achieved at 80 K.


Sign in / Sign up

Export Citation Format

Share Document