scholarly journals Organic–Inorganic Nanohybrid Electrochemical Sensors from Multi-Walled Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles and In-Situ Wrapped with Poly(2-methacryloyloxyethyl ferrocenecarboxylate) for Detection of the Content of Food Additives

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1388
Author(s):  
Jing-Wen Xu ◽  
Zhuo-Miao Cui ◽  
Zhan-Qing Liu ◽  
Feng Xu ◽  
Ya-Shao Chen ◽  
...  

An electrochemical sensor for detection of the content of aspartame was developed by modifying a glassy carbon electrode (GCE) with multi-walled carbon nanotubes decorated with zinc oxide nanoparticles and in-situ wrapped with poly(2-methacryloyloxyethyl ferrocenecarboxylate) (MWCNTs@ZnO/PMAEFc). MWCNTs@ZnO/PMAEFc nanohybrids were prepared through reaction of zinc acetate dihydrate with LiOH·H2O, followed by reversible addition-fragmentation chain transfer polymerization of 2-methacryloyloxyethyl ferrocenecarboxylate, and were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), scanning electron microscope (SEM), and transmission electron microscope (TEM) techniques. The electrochemical properties of the prepared nanohybrids with various composition ratios were examined by cyclic voltammetry (CV), and the trace additives in food and/or beverage was detected by using differential pulse voltammetry (DPV). The experimental results indicated that the prepared nanohybrids for fabrication of electrochemical modified electrodes possess active electroresponse, marked redox current, and good electrochemical reversibility, which could be mediated by changing the system formulations. The nanohybrid modified electrode sensors had a good peak current linear dependence on the analyte concentration with a wide detection range and a limit of detection as low as about 1.35 × 10−9 mol L−1, and the amount of aspartame was measured to be 35.36 and 40.20 µM in Coke zero, and Sprite zero, respectively. Therefore, the developed nanohybrids can potentially be used to fabricate novel electrochemical sensors for applications in the detection of beverage and food safety.

RSC Advances ◽  
2016 ◽  
Vol 6 (116) ◽  
pp. 115317-115325 ◽  
Author(s):  
Yaru Yan ◽  
Qitong Huang ◽  
Chan Wei ◽  
Shirong Hu ◽  
Hanqiang Zhang ◽  
...  

Cyclic voltammetry of HQ and CC recorded on Nafion/CDs–ZnO/MWCNTs/GCE.


2016 ◽  
Vol 30 (34) ◽  
pp. 1650406 ◽  
Author(s):  
Maruthanayagam Jay Chithra ◽  
Kuppusamy Pushpanathan

Well-dispersed undoped and copper-doped zinc oxide nanoparticles (Zn[Formula: see text]Cu[Formula: see text]O, [Formula: see text] = 0, 1, 5 and 10 wt.%) have been synthesized by precipitation method at room temperature. X-ray diffraction data revealed that the undoped and copper-doped zinc oxide nanoparticles are in phase pure wurtzite structure and the crystallite size increases from 24 nm to 36 nm with increase in dopant concentration. The optical band gap was found to decrease with increasing dopant concentration, which clearly indicates the blue shift. High-resolution scanning electron microscope image shows that the synthesized samples consist of an assembly of nanopetals. Transmission electron microscope image also confirmed the average particle size of 20–50 nm. Energy-dispersive X-ray spectrum shows that the prepared samples are free from impurities. Photoluminescence spectra exposed that copper ions are doped into the lattice positions of ZnO. A simultaneous differential scanning calorimeter/thermogravimetric analysis combination was used to study the phase variations.


Sign in / Sign up

Export Citation Format

Share Document