pulmonary exposure
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 37)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
pp. 108285
Author(s):  
Tissiane Eid Barbosa Ashino ◽  
Monielle Leal Sant́ Ana ◽  
Ariane Harumi Yoshikawa ◽  
Lucas Possebon ◽  
Sara de Souza Costa ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Pernille Høgh Danielsen ◽  
Katja Maria Bendtsen ◽  
Kristina Bram Knudsen ◽  
Sarah Søs Poulsen ◽  
Tobias Stoeger ◽  
...  

Abstract Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control. Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiqi Wang ◽  
Qiong Wang ◽  
Ziyue Zhao ◽  
Jingbo Fan ◽  
Linghan Qin ◽  
...  

Alveolar macrophages are responsible for clearance of airborne dust and pathogens. How they recognize and phagocytose a variety of engineered nanomaterials (ENMs) with different properties is an important issue for safety assessment of ENMs. Surfactant-associated proteins, specifically existing in the pulmonary surfactant, are important opsonins for phagocytosis of airborne microorganisms. The purposes of the current study are to understand whether opsonization of ENMs by surfactant-associated proteins promotes phagocytosis of ENMs and cytokine production, and to determine whether a common pathway for phagocytosis of ENMs with different properties exists. For these purposes, four ENMs, MWCNT-7, TiO2, SiO2, and fullerene C60, with different shapes, sizes, chemical compositions, and surface reactivities, were chosen for this study. Short-term pulmonary exposure to MWCNT-7, TiO2, SiO2, and C60 induced inflammation in the rat lung, and most of the administered ENMs were phagocytosed by alveolar macrophages. The ENMs were phagocytosed by isolated primary alveolar macrophages (PAMs) in vitro, and phagocytosis was enhanced by rat bronchioalveolar lavage fluid (BALF), suggesting that proteins in the BALF were associated with phagocytosis. Analysis of proteins bound to the 4 ENMs by LC/MS indicated that surfactant-associated proteins A and D (SP-A, SP-D) were common binding proteins for all the 4 ENMs. Both BALF and SP-A, but not SP-D, enhanced TNF-α production by MWCNT-7 treated PAMs; BALF, SP-A, and SP-D increased IL-1β production in TiO2 and SiO2 treated PAMs; and BALF, SP-A, and SP-D enhanced IL-6 production in C60 treated PAMs. Knockdown of CD14, a receptor for SP-A/D, significantly reduced phagocytosis of ENMs and SP-A-enhanced cytokine production by PAMs. These results indicate that SP-A/D can opsonize all the test ENMs and enhance phagocytosis of the ENMs by alveolar macrophages through CD14, suggesting that SP-A/D-CD14 is a common pathway mediating phagocytosis of ENMs. Cytokine production induced by ENMs, however, is dependent on the type of ENM that is phagocytosed. Our results demonstrate a dual role for surfactant proteins as opsonins for both microbes and for inhaled dusts and fibers, including ENMs, allowing macrophages to recognize and remove the vast majority of these particles, thereby, greatly lessening their toxicity in the lung.


Author(s):  
Anneke Himstedt ◽  
Jens Markus Borghardt ◽  
Sebastian Georg Wicha

AbstractDetermining and understanding the target-site exposure in clinical studies remains challenging. This is especially true for oral drug inhalation for local treatment, where the target-site is identical to the site of drug absorption, i.e., the lungs. Modeling and simulation based on clinical pharmacokinetic (PK) data may be a valid approach to infer the pulmonary fate of orally inhaled drugs, even without local measurements. In this work, a simulation-estimation study was systematically applied to investigate five published model structures for pulmonary drug absorption. First, these models were compared for structural identifiability and how choosing an inadequate model impacts the inference on pulmonary exposure. Second, in the context of the population approach both sequential and simultaneous parameter estimation methods after intravenous administration and oral inhalation were evaluated with typically applied models. With an adequate model structure and a well-characterized systemic PK after intravenous dosing, the error in inferring pulmonary exposure and retention times was less than twofold in the majority of evaluations. Whether a sequential or simultaneous parameter estimation was applied did not affect the inferred pulmonary PK to a relevant degree. One scenario in the population PK analysis demonstrated biased pulmonary exposure metrics caused by inadequate estimation of systemic PK parameters. Overall, it was demonstrated that empirical modeling of intravenous and inhalation PK datasets provided robust estimates regarding accuracy and bias for the pulmonary exposure and pulmonary retention, even in presence of the high variability after drug inhalation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256166
Author(s):  
Rui Zhang ◽  
Myles M. Jones ◽  
De’Jana Parker ◽  
Ronna E. Dornsife ◽  
Nathan Wymer ◽  
...  

As electronic cigarette (E-cig) use, also known as “vaping”, has rapidly increased in popularity, data regarding potential pathologic effects are recently emerging. Recent associations between vaping and lung pathology have led to an increased need to scrutinize E-cigs for adverse health impacts. Our previous work (and others) has associated vaping with Ca2+-dependent cytotoxicity in cultured human airway epithelial cells. Herein, we develop a vaped e-liquid pulmonary exposure mouse model to evaluate vaping effects in vivo. Using this model, we demonstrate lung pathology through the use of preclinical measures, that is, the lung wet: dry ratio and lung histology/H&E staining. Further, we demonstrate that acute vaping increases macrophage chemotaxis, which was ascertained using flow cytometry-based techniques, and inflammatory cytokine production, via Luminex analysis, through a Ca2+-dependent mechanism. This increase in macrophage activation appears to exacerbate pulmonary pathology resulting from microbial infection. Importantly, modulating Ca2+ signaling may present a therapeutic direction for treatment against vaping-associated pulmonary inflammation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1742
Author(s):  
Hélène Barthel ◽  
Christian Darne ◽  
Laurent Gaté ◽  
Athanase Visvikis ◽  
Carole Seidel

In the field of nanotechnology, the use of multi-walled carbon nanotubes (MWCNTs) is growing. Pulmonary exposure during their production, use, and handling is raising concerns about their potential adverse health effects. The purpose of this study is to assess how the physical characteristics of MWCNTs, such as diameter and/or length, can play a role in cellular toxicity. Our experimental design is based on the treatment of human bronchial epithelial cells (BEAS-2B) for six weeks with low concentrations (0.125–1 µg/cm2) of MWCNTs having opposite characteristics: NM-403 and Mitsui-7. Following treatment with both MWCNTs, we observed an increase in mitotic abnormalities and micronucleus-positive cells. The cytotoxic effect was delayed in cells treated with NM-403 compared to Mitsui-7. After 4–6 weeks of treatment, a clear cellular morphological change from epithelial to fibroblast-like phenotype was noted, together with a change in the cell population composition. BEAS-2B cells underwent a conversion from the epithelial to mesenchymal state as we observed a decrease in the epithelial marker E-cadherin and an increased expression of mesenchymal markers N-cadherin, Vimentin, and Fibronectin. After four weeks of recovery, we showed that the induced epithelial-mesenchymal transition is reversible, and that the degree of reversibility depends on the MWCNT.


Author(s):  
Yi Guo ◽  
Hriday Bera ◽  
Changzhi Shi ◽  
Li Zhang ◽  
Dongmei Cun ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document