scholarly journals Impact of Dietary Factors on Brugada Syndrome and Long QT Syndrome

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2482
Author(s):  
Sara D’Imperio ◽  
Michelle M. Monasky ◽  
Emanuele Micaglio ◽  
Gabriele Negro ◽  
Carlo Pappone

A healthy regime is fundamental for the prevention of cardiovascular diseases (CVD). In inherited channelopathies, such as Brugada syndrome (BrS) and Long QT syndrome (LQTS), unfortunately, sudden cardiac death could be the first sign for patients affected by these syndromes. Several known factors are used to stratify the risk of developing cardiac arrhythmias, although none are determinative. The risk factors can be affected by adjusting lifestyle habits, such as a particular diet, impacting the risk of arrhythmogenic events and mortality. To date, the importance of understanding the relationship between diet and inherited channelopathies has been underrated. Therefore, we describe herein the effects of dietary factors on the development of arrhythmia in patients affected by BrS and LQTS. Modifying the diet might not be enough to fully prevent arrhythmias, but it can help lower the risk.

2020 ◽  
pp. 126-133
Author(s):  
S. N. Chuprova ◽  
E. P. Rudneva ◽  
Yu. V. Lobzin

Introduction. One of the causes of sudden cardiac death in children is inherited arrhythmias. In view of the links between the increase in body temperature and the manifestation of some inherited cardiac arrhythmias (including typical electrocardiographic changes), the frequency of inherited cardiac arrhythmias in children with infectious diseases have been analyzed.The relevance of the study: is initiated by the necessity of timely diagnosis of inherited cardiac arrhythmias and conduction in children in order to prevent sudden cardiac death in them.The purpose of the study: to determine the frequency of inherited arrhythmias in children with infectious diseases based on clinical and electrocardiographic analysis.Materials and methods: 3584 electrocardiograms (ECGs) of children with infectious diseases (average age 8.5 ± 5.3 years old; boys – 57.5%, girls – 42.5%) hospitalized in the Pediatric Research and Clinical Center for Infectious Diseases were analyzed. Patients with changes in the ECGs were given additional examination depending on the intended diagnosis (inherited arrhythmias): 24-Hour Holter ECG monitoring, stress test, echocardiography. The family history was also clarified, and the parents’ ECG was analyzed.Results and conclusions. ECG changes, which are typical for Brugada syndrome (type 1), were detected in two children (0.05%) at first. Long QT syndrome was also detected in two children (0,05%). Mutations in the SCN5A gene were identified in children with Brugada syndrome, and in the KCNQ1 gene with long QT syndrome. An episode of monomorphic ventricular tachycardia was recorded at night in a 5-year-old girl with atrioventricular block 1 degree, hypoadaptation of the QT interval with repeated Holter ECG monitoring during sleep. Cases of life-threatening ventricular arrhythmias have previously been described in the literature in patients with Brugada syndrome. An increase in body temperature leads to disruption of the sodium ion channels which underlie the development of this syndrome, thereby, on the one hand, increasing the risk of life-threatening arrhythmias and sudden cardiac death, on the other hand, to the clinical manifestation of the disease, allowing the diagnosis to be made in time. In the cases of long QT syndrome, in our study, the increase in the corrected QT interval (QTc) is most likely due to a change in heart rate rather than a direct effect of an increase in body temperature on the ion channels.


2017 ◽  
Vol 19 (2) ◽  
pp. 15-22
Author(s):  
S N Kolyubaeva

The review presents the recent data on genetic reasons of sudden cardiac death. Mutations discuss in gens associated with sudden cardiac death. Channalopathies, such as Brugada syndrome, long QT syndrome, short QT syndrome and catecholaminergic polymorphic ventricular tachycardia are characterized by arrhythmias in normal heart resulting from genetic anomalies in ion channels


Circulation ◽  
2008 ◽  
Vol 117 (17) ◽  
pp. 2184-2191 ◽  
Author(s):  
Ilan Goldenberg ◽  
Arthur J. Moss ◽  
Derick R. Peterson ◽  
Scott McNitt ◽  
Wojciech Zareba ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hyun Sok Yoo ◽  
Nancy Medina ◽  
María Alejandra von Wulffen ◽  
Natalia Ciampi ◽  
Analia Paolucci ◽  
...  

Abstract Background The congenital long QT syndrome type 2 is caused by mutations in KCNH2 gene that encodes the alpha subunit of potassium channel Kv11.1. The carriers of the pathogenic variant of KCNH2 gene manifest a phenotype characterized by prolongation of QT interval and increased risk of sudden cardiac death due to life-threatening ventricular tachyarrhythmias. Results A family composed of 17 members with a family history of sudden death and recurrent syncopes was studied. The DNA of proband with clinical manifestations of long QT syndrome was analyzed using a massive DNA sequencer that included the following genes: KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, ANK2, KCNJ2, CACNA1, CAV3, SCN1B, SCN4B, AKAP9, SNTA1, CALM1, KCNJ5, RYR2 and TRDN. DNA sequencing of proband identified a novel pathogenic variant of KCNH2 gene produced by a heterozygous frameshift mutation c.46delG, pAsp16Thrfs*44 resulting in the synthesis of a truncated alpha subunit of the Kv11.1 ion channel. Eight family members manifested the phenotype of long QT syndrome. The study of family segregation using Sanger sequencing revealed the identical variant in several members of the family with a positive phenotype. Conclusions The clinical and genetic findings of this family demonstrate that the novel frameshift mutation causing haploinsufficiency can result in a congenital long QT syndrome with a severe phenotypic manifestation and an elevated risk of sudden cardiac death.


Sign in / Sign up

Export Citation Format

Share Document