scholarly journals Bone-Regulating MicroRNAs and Resistance Exercise: A Mini-Review

Osteology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 11-20
Author(s):  
Debra A. Bemben ◽  
Zhaojing Chen ◽  
Samuel R. Buchanan

MicroRNAs (miRNA) are a class of short noncoding RNA that play important roles in controlling gene expression. Many miRNAs have been identified as being important regulators of bone cell function, thus affecting the bone remodeling processes. In addition to being expressed in specific tissues and exerting intracellular effects, miRNAs can enter the blood where they can be taken up by other tissues. These circulating miRNAs (c-miRNA) also have clinical significance as biomarkers of musculoskeletal diseases as they are tissue-specific, are stable and easily detectable, and require minimally invasive procedures. This mini-review discusses miRNAs with regulatory roles in bone metabolism and c-miRNA responses to acute bouts of resistance exercise. MiRNA responses (e.g., upregulation/downregulation of expression) vary depending on the resistance exercise protocol characteristics and the age of the participants. There are gaps in the literature that need to be addressed as most of the resistance exercise studies focused on miRNAs that regulate skeletal muscle in male participants.

2008 ◽  
Vol 33 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Elin Grundberg ◽  
Helena Brändström ◽  
Kevin C. L. Lam ◽  
Scott Gurd ◽  
Bing Ge ◽  
...  

Osteoblasts are key players in bone remodeling. The accessibility of human primary osteoblast-like cells (HObs) from bone explants makes them a lucrative model for studying molecular physiology of bone turnover, for discovering novel anabolic therapeutics, and for mesenchymal cell biology in general. Relatively little is known about resting and dynamic expression profiles of HObs, and to date no studies have been conducted to systematically assess the osteoblast transcriptome. The aim of this study was to characterize HObs and investigate signaling cascades and gene networks with genomewide expression profiling in resting and bone morphogenic protein (BMP)-2- and dexamethasone-induced cells. In addition, we compared HOb gene expression with publicly available samples from the Gene Expression Omnibus. Our data show a vast number of genes and networks expressed predominantly in HObs compared with closely related cells such as fibroblasts or chondrocytes. For instance, genes in the insulin-like growth factor (IGF) signaling pathway were enriched in HObs ( P = 0.003) and included the binding proteins (IGFBP-1, -2, -5) and IGF-II and its receptor. Another HOb-specific expression pattern included leptin and its receptor ( P < 10−8). Furthermore, after stimulation of HObs with BMP-2 or dexamethasone, the expression of several interesting genes and pathways was observed. For instance, our data support the role of peripheral leptin signaling in bone cell function. In conclusion, we provide the landscape of tissue-specific and dynamic gene expression in HObs. This resource will allow utilization of osteoblasts as a model to study specific gene networks and gene families related to human bone physiology and diseases.


2020 ◽  
Vol 38 (12) ◽  
pp. 713-719
Author(s):  
Michel Monteiro Macedo ◽  
Fernando Francisco Pazello Mafra ◽  
Carla de Brito Teixeira ◽  
Romildo Torres-Silva ◽  
Raphael Peres dos Santos Francisco ◽  
...  

1995 ◽  
Vol 131 (5) ◽  
pp. 1351-1359 ◽  
Author(s):  
R St-Arnaud ◽  
J Prud'homme ◽  
C Leung-Hagesteijn ◽  
S Dedhar

Recent studies have shown that the multifunctional protein calreticulin can localize to the cell nucleus and regulate gene transcription via its ability to bind a protein motif in the DNA-binding domain of nuclear hormone receptors. A number of known modulators of bone cell function, including vitamin D, act through this receptor family, suggesting that calreticulin may regulate their action in bone cells. We have used a gain-of-function strategy to examine this putative role of calreticulin in MC3T3-E1 osteoblastic cells. Purified calreticulin inhibited the binding of the vitamin D receptor to characterized vitamin D response elements in gel retardation assays. This inhibition was due to direct protein-protein interactions between the vitamin D receptor and calreticulin. Expression of calreticulin transcripts declined during MC3T3-E1 osteoblastic differentiation. MC3T3-E1 cells were transfected with calreticulin expression vectors; stably transfected cell lines overexpressing recombinant calreticulin were established and assayed for vitamin D-induced gene expression and the capacity to mineralize. Constitutive calreticulin expression inhibited basal and vitamin D-induced expression of the osteocalcin gene, whereas osteopontin gene expression was unaffected. This pattern mimicked the gene expression pattern observed in parental cells before down-regulation of endogenous calreticulin expression. In long-term cultures of parental or vector-transfected cells, 1 alpha,25-dihydroxyvitamin D3 (1,25[OH]2D3) induced a two- to threefold stimulation of 45Ca accumulation into the matrix layer. Constitutive expression of calreticulin inhibited the 1,25(OH)2D3-induced 45Ca accumulation. This result correlated with the complete absence of mineralization nodules in long-term cultures of calreticulin-transfected cells. These data suggest that calreticulin can regulate bone cell function by interacting with specific nuclear hormone receptor-mediated pathways.


2019 ◽  
Vol 19 (4) ◽  
pp. 255-263 ◽  
Author(s):  
Yuangang Wu ◽  
Xiaoxi Lu ◽  
Bin Shen ◽  
Yi Zeng

Background: Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. Objective: The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. Methods: The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. Results and Discussion: With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. Conclusion: In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.


Sign in / Sign up

Export Citation Format

Share Document