scholarly journals Radiative Corrections to Semileptonic Beta Decays: Progress and Challenges

Particles ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 397-468
Author(s):  
Chien-Yeah Seng

We review some recent progress in the theory of electroweak radiative corrections in semileptonic decay processes. The resurrection of the so-called Sirlin’s representation based on current algebra relations permits a clear separation between the perturbatively-calculable and incalculable pieces in the O(GFα) radiative corrections. The latter are expressed as compact hadronic matrix elements that allow systematic non-perturbative analysis such as dispersion relation and lattice QCD. This brings substantial improvements to the precision of the electroweak radiative corrections in semileptonic decays of pion, kaon, free neutron and JP=0+ nuclei that are important theory inputs in precision tests of the Standard Model. Unresolved issues and future prospects are discussed.

2019 ◽  
Vol 15 (3) ◽  
pp. 24
Author(s):  
Phan Hong Khiem ◽  
Pham Nguyen Hoang Thinh

We present full  electroweak radiative corrections to  with the initial beam polarizations at the International Linear Collider (ILC). The calculation is checked numerically by using three consistency tests that are ultraviolet finiteness, infrared finiteness, and gauge parameter independence. In phenomenological results, we study the impact of the electroweak corrections to total cross section as well as its distributions. In addition, we discuss the possibility of searching  for an additional Higgs in arbitrary beyond the Standard Model (BSM) through ZH production at the ILC.


2016 ◽  
Vol 57 (8) ◽  
pp. 695-702 ◽  
Author(s):  
James P. Vary ◽  
Lekha Adhikari ◽  
Guangyao Chen ◽  
Yang Li ◽  
Pieter Maris ◽  
...  

2019 ◽  
Vol 100 (7) ◽  
Author(s):  
S. Bondarenko ◽  
Ya. Dydyshka ◽  
L. Kalinovskaya ◽  
L. Rumyantsev ◽  
R. Sadykov ◽  
...  

1993 ◽  
Vol 391 (1-2) ◽  
pp. 127-146 ◽  
Author(s):  
Raman Sundrum ◽  
Stephen D.H. Hsu

1997 ◽  
Vol 394 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
Hidetoshi Akimune ◽  
Hiroyasu Ejiri ◽  
Mamoru Fujiwara ◽  
Izuru Daito ◽  
Toru Inomata ◽  
...  

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Jason Aebischer ◽  
Andrzej J. Buras ◽  
Jacky Kumar

Abstract Recently the RBC-UKQCD lattice QCD collaboration presented new results for the hadronic matrix elements relevant for the ratio ε′/ε in the Standard Model (SM) albeit with significant uncertainties. With the present knowledge of the Wilson coefficients and isospin breaking effects there is still a sizable room left for new physics (NP) contributions to ε′/ε which could both enhance or suppress this ratio to agree with the data. The new SM value for the K0 − $$ {\overline{K}}^0 $$ K ¯ 0 mass difference ∆MK from RBC-UKQCD is on the other hand by 2σ above the data hinting for NP required to suppress ∆MK. Simultaneously the most recent results for K+ → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ from NA62 and for KL → $$ {\pi}^0\nu \overline{\nu} $$ π 0 ν ν ¯ from KOTO still allow for significant NP contributions. We point out that the suppression of ∆MK by NP requires the presence of new CP-violating phases with interesting implications for K → $$ \pi \nu \overline{\nu} $$ πν ν ¯ , KS → μ+μ− and KL → π0ℓ+ℓ− decays. Considering a Z′-scenario within the SMEFT we analyze the dependence of all these observables on the size of NP still allowed by the data on ε′/ε. The hinted ∆MK anomaly together with the εK constraint implies in the presence of only left-handed (LH) or right-handed (RH) flavour-violating Z′ couplings strict correlation between K+ → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ and KL → $$ {\pi}^0\nu \overline{\nu} $$ π 0 ν ν ¯ branching ratios so that they are either simultaneously enhanced or suppressed relative to SM predictions. An anticorrelation can only be obtained in the presence of both LH and RH couplings. Interestingly, the NP QCD penguin scenario for ε′/ε is excluded by SMEFT renormalization group effects in εK so that NP effects in ε′/ε are governed by electroweak penguins. We also investigate for the first time whether the presence of a heavy Z′ with flavour violating couplings could generate through top Yukawa renormalization group effects FCNCs mediated by the SM Z-boson. The outcome turns out to be very interesting.


Sign in / Sign up

Export Citation Format

Share Document