scholarly journals Reptile Host Associations of Ixodes scapularis in Florida and Implications for Borrelia spp. Ecology

Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 999
Author(s):  
Carrie De Jesus ◽  
Chanakya Bhosale ◽  
Kristen Wilson ◽  
Zoe White ◽  
Samantha M. Wisely

Host associations of the tick vector for Lyme Borreliosis, Ixodes scapularis, differ across its geographic range. In Florida, the primary competent mammalian host of Lyme disease is not present but instead has other small mammals and herpetofauna that I. scapularis can utilize. We investigated host–tick association for lizards, the abundance of ticks on lizards and the prevalence of Borrelia burgdorferi sensu lato (sl). To determine which lizard species I. scapularis associates with, we examined 11 native lizard species from historical herpetological specimens. We found that (294/5828) of the specimens had attached ticks. The most infested species were Plestiodon skinks (241/1228) and Ophisaurus glass lizards (25/572). These species were then targeted at six field sites across Florida and sampled from June to September 2020, using drift fence arrays, cover boards and fishing. We captured 125 lizards and collected 233 immature I. scapularis. DNA was extracted from ticks and lizard tissue samples, followed by PCR testing for Borrelia spp. Of the captured lizards, 69/125 were infested with immature I. scapularis. We did not detect Borrelia spp. from tick or lizard tissue samples. Overall, we found that lizards are commonly infested with I. scapularis. However, we did not detect Borrelia burgdorferi sl. These findings add to a growing body of evidence that lizards are poor reservoir species.

2013 ◽  
Vol 81 (7) ◽  
pp. 2488-2498 ◽  
Author(s):  
Toni G. Patton ◽  
Kevin S. Brandt ◽  
Christi Nolder ◽  
Dawn R. Clifton ◽  
James A. Carroll ◽  
...  

ABSTRACTThe impact of theBorrelia burgdorferisurface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene,bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, BbΔA66, remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain.Ixodes scapularislarvae successfully acquired BbΔA66following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs. A series of tick transmission experiments (n= 7) demonstrated that the ability of BbΔA66-infected nymphs to infect laboratory mice was significantly impaired compared to that of mice fed upon by WT-infected ticks.trans-complementation of BbΔA66with an intact copy ofbba66restored the WT infectious phenotype in mice via tick transmission. These results suggest a role for BBA66 in facilitatingB. burgdorferidissemination and transmission from the tick vector to the mammalian host as part of the disease process for Lyme borreliosis.


2005 ◽  
Vol 42 (4) ◽  
pp. 676-684 ◽  
Author(s):  
Dorothee Grimm ◽  
Kit Tilly ◽  
Dawn M. Bueschel ◽  
Mark A. Fisher ◽  
Paul F. Policastro ◽  
...  

2004 ◽  
Vol 72 (8) ◽  
pp. 4864-4867 ◽  
Author(s):  
Jon S. Blevins ◽  
Andrew T. Revel ◽  
Melissa J. Caimano ◽  
Xiaofeng F. Yang ◽  
James A. Richardson ◽  
...  

ABSTRACT luxS mutants of Borrelia burgdorferi strain 297 naturally colonized their arthropod (Ixodes scapularis) vector, were maintained in ticks throughout the molting process (larvae to nymphs), were tick transmitted to uninfected mice, and elicited histopathology in mice indistinguishable from that induced by wild-type B. burgdorferi.


Healthcare ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Janet Foley ◽  
Bradley Bierman ◽  
Lance Durden

Lyme disease has been documented in northern areas of Canada, but the source of the etiological bacterium, Borrelia burgdorferi sensu lato (Bbsl) has been in doubt. We collected 87 ticks from 44 songbirds during 2017, and 24 (39%) of 62 nymphs of the blacklegged tick, Ixodes scapularis, were positive for Bbsl. We provide the first report of Bbsl-infected, songbird-transported I. scapularis in Cape Breton, Nova Scotia; Newfoundland and Labrador; north-central Manitoba, and Alberta. Notably, we report the northernmost account of Bbsl-infected ticks parasitizing a bird in Canada. DNA extraction, PCR amplification, and DNA sequencing reveal that these Bbsl amplicons belong to Borrelia burgdorferi sensu stricto (Bbss), which is pathogenic to humans. Based on our findings, health-care providers should be aware that migratory songbirds widely disperse B. burgdorferi-infected I. scapularis in Canada’s North, and local residents do not have to visit an endemic area to contract Lyme disease.


1994 ◽  
Vol 32 (3) ◽  
pp. 755-758 ◽  
Author(s):  
C Ewing ◽  
A Scorpio ◽  
D R Nelson ◽  
T N Mather

Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 46 ◽  
Author(s):  
John Scott ◽  
Kerry Clark ◽  
Lance Durden

Wild birds transport ticks into Canada that harbor a diversity of zoonotic pathogens. However, medical practitioners often question how these zoonotic pathogens are present in their locality. In this study, we provide the first report of an Amblyomma inornatum tick cofeeding with a blacklegged tick, Ixodes scapularis, which parasitized a Veery, Catharus fuscescens—a neotropical songbird. Using the flagellin (flaB) gene of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, and the 18S rRNA gene of the Babesia piroplasm, a malaria-like microorganism, we detected Borrelia burgdorferi sensu stricto and Babesia odocoilei, respectively, in an I. scapularis nymph. After the molt, these ticks can bite humans. Furthermore, this is the first documentation of B. odocoilei in a tick parasitizing a bird. Our findings substantiate the fact that migratory songbirds transport neotropical ticks long distances, and import them into Canada during northward spring migration. Health care practitioners need to be aware that migratory songbirds transport pathogen-laden ticks into Canada annually, and pose an unforeseen health risk to Canadians.


Author(s):  
Julia E Poje ◽  
Jose F Azevedo ◽  
Nisha Nair ◽  
Kurayi Mahachi ◽  
Lexi E Frank ◽  
...  

Abstract Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.


2019 ◽  
Vol 119 (1) ◽  
pp. 299-315 ◽  
Author(s):  
Friederike Krämer ◽  
Ricarda Hüsken ◽  
Eva Maria Krüdewagen ◽  
Katrin Deuster ◽  
Byron Blagburn ◽  
...  

AbstractThe capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.


Sign in / Sign up

Export Citation Format

Share Document