scholarly journals The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections

2020 ◽  
Vol 13 (9) ◽  
pp. 236 ◽  
Author(s):  
Alexander Panossian ◽  
Thomas Brendler

The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.

2021 ◽  
Vol 12 ◽  
Author(s):  
Amos C. Lee ◽  
Yunjin Jeong ◽  
Sumin Lee ◽  
Haewook Jang ◽  
Allen Zheng ◽  
...  

In addition to SARS-CoV-2 and its variants, emerging viruses that cause respiratory viral infections will continue to arise. Increasing evidence suggests a delayed, possibly suppressed, type 1 interferon (IFN-I) response occurs early during COVID-19 and other viral respiratory infections such as SARS and MERS. These observations prompt considering IFN-β as a prophylactic or early intervention for respiratory viral infections. A rationale for developing and testing intranasal interferon beta (IFN-β) as an immediately available intervention for new respiratory viral infections that will arise unexpectedly in the future is presented and supported by basic and clinical trial observations. IFN-β prophylaxis could limit the spread and consequences of an emerging respiratory viral infection in at-risk individuals while specific vaccines are being developed.


Author(s):  
Faezeh Abbaszadeh ◽  
Narges Eslami ◽  
Parisa Shiri Aghbash ◽  
Hamed Ebrahimzadeh Leylabadlo ◽  
Hossein Bannazadeh Baghi

: Viral respiratory infections are a leading cause of illness and mortality in all age groups worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has spread throughout the world, igniting the twenty-first century’s deadliest pandemic. Research has shown that phages, which are bacterial viruses, can help treat viral infections with the effect on the immune system and their antiviral activity. Phages have specific activity and affect only the target without any side effects on other parts of the human body. Human phage-related diseases have not been reported yet; therefore, phages can be a very safe treatment, especially in many viral infections. The results of clinical studies have a promising future regarding the use of phages. It is possible that the phages display technique aided in the production of SARS-CoV-2 specific antibodies against its viral protein, which prevented the virus from binding or replicating and preventing secondary microbial infections, which have been linked to many patient deaths. Furthermore, an effective antiviral vaccine can be produced by using the same technique. Given the growing number of coronaviruses cases around the world, in the present paper, we review the possible mechanisms of phages against the COVID-19 disease and the method that may be a solution to eliminate the virus.


Author(s):  
Michael P. Wakeman

The elderly are a growing proportion of the global population. They are more susceptible to non-communicable diseases and respiratory viral diseases like influenza and covid19, which may lead to increased levels of morbidity and mortality than those of a younger generation. It is also reported that co-morbidities, especially diabetes, hypertension and coronary heart disease contribute significantly to the prognosis with these types of infections. That the immune system operates in a less efficient way as an individual ages, is now well understood and likely contributes significantly to this situation. The role of certain micronutrients in maintaining a healthy immune system is well recognised and demonstrated to play an important role both in preventing and controlling infection. However, for a number of reasons many elderly individuals have a less than optimal intake of many of the micronutrients that support the immune system. This review examines the contributory roles an aging immune system, suboptimal intake of micronutrients, comorbidities and the impact of the intake of medications typically used to treat them can play in the outcome of viral respiratory infections. It identifies the need for supplementation, especially in the elderly to support the immune system.


2020 ◽  
pp. 33-48
Author(s):  
O. A. Gromova ◽  
I. Yu. Torshin

The annual increase in the incidence of influenza, SARS, and the COVID‑19 pandemic indicate the need for comprehensive programs to support congenital antiviral immunity. To increase the effectiveness of the treatment of viral respiratory infections, it is important to attenuate the effects of the so-called cytokine storm and enhanced compensation of the patient’s comorbid pathologies. Increasing the availability of zinc, vitamin C and rutoside can improve the body’s resistance to viral infections. In addition to micronutrients, to reduce the activity of allergic inflammation, second-generation H1-histamine receptor blockers (loratadine, etc.) and calcium gluconate can be used. To lower the  temperature, it is important to include paracetamol in therapy.


2006 ◽  
Vol 44 (8) ◽  
pp. 2739-2742 ◽  
Author(s):  
J. Ordas ◽  
J. A. Boga ◽  
M. Alvarez-Arguelles ◽  
L. Villa ◽  
C. Rodriguez-Dehli ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Miyu Moriyama ◽  
Walter J. Hugentobler ◽  
Akiko Iwasaki

The seasonal cycle of respiratory viral diseases has been widely recognized for thousands of years, as annual epidemics of the common cold and influenza disease hit the human population like clockwork in the winter season in temperate regions. Moreover, epidemics caused by viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and the newly emerging SARS-CoV-2 occur during the winter months. The mechanisms underlying the seasonal nature of respiratory viral infections have been examined and debated for many years. The two major contributing factors are the changes in environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory virus stability and transmission rates. More recent research highlights the importance of the environmental factors, especially temperature and humidity, in modulating host intrinsic, innate, and adaptive immune responses to viral infections in the respiratory tract. Here we review evidence of how outdoor and indoor climates are linked to the seasonality of viral respiratory infections. We further discuss determinants of host response in the seasonality of respiratory viruses by highlighting recent studies in the field.


1963 ◽  
Vol 47 (5) ◽  
pp. 1171-1184 ◽  
Author(s):  
Lewis B. Lefkowitz ◽  
George Gee Jackson ◽  
Harry F. Dowling

Sign in / Sign up

Export Citation Format

Share Document