scholarly journals Nasopharyngeal Type-I Interferon for Immediately Available Prophylaxis Against Emerging Respiratory Viral Infections

2021 ◽  
Vol 12 ◽  
Author(s):  
Amos C. Lee ◽  
Yunjin Jeong ◽  
Sumin Lee ◽  
Haewook Jang ◽  
Allen Zheng ◽  
...  

In addition to SARS-CoV-2 and its variants, emerging viruses that cause respiratory viral infections will continue to arise. Increasing evidence suggests a delayed, possibly suppressed, type 1 interferon (IFN-I) response occurs early during COVID-19 and other viral respiratory infections such as SARS and MERS. These observations prompt considering IFN-β as a prophylactic or early intervention for respiratory viral infections. A rationale for developing and testing intranasal interferon beta (IFN-β) as an immediately available intervention for new respiratory viral infections that will arise unexpectedly in the future is presented and supported by basic and clinical trial observations. IFN-β prophylaxis could limit the spread and consequences of an emerging respiratory viral infection in at-risk individuals while specific vaccines are being developed.

2020 ◽  
pp. 33-48
Author(s):  
O. A. Gromova ◽  
I. Yu. Torshin

The annual increase in the incidence of influenza, SARS, and the COVID‑19 pandemic indicate the need for comprehensive programs to support congenital antiviral immunity. To increase the effectiveness of the treatment of viral respiratory infections, it is important to attenuate the effects of the so-called cytokine storm and enhanced compensation of the patient’s comorbid pathologies. Increasing the availability of zinc, vitamin C and rutoside can improve the body’s resistance to viral infections. In addition to micronutrients, to reduce the activity of allergic inflammation, second-generation H1-histamine receptor blockers (loratadine, etc.) and calcium gluconate can be used. To lower the  temperature, it is important to include paracetamol in therapy.


2020 ◽  
Vol 7 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Miyu Moriyama ◽  
Walter J. Hugentobler ◽  
Akiko Iwasaki

The seasonal cycle of respiratory viral diseases has been widely recognized for thousands of years, as annual epidemics of the common cold and influenza disease hit the human population like clockwork in the winter season in temperate regions. Moreover, epidemics caused by viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and the newly emerging SARS-CoV-2 occur during the winter months. The mechanisms underlying the seasonal nature of respiratory viral infections have been examined and debated for many years. The two major contributing factors are the changes in environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory virus stability and transmission rates. More recent research highlights the importance of the environmental factors, especially temperature and humidity, in modulating host intrinsic, innate, and adaptive immune responses to viral infections in the respiratory tract. Here we review evidence of how outdoor and indoor climates are linked to the seasonality of viral respiratory infections. We further discuss determinants of host response in the seasonality of respiratory viruses by highlighting recent studies in the field.


2015 ◽  
Vol 14 (5) ◽  
pp. 72-76
Author(s):  
A. A. Sominina ◽  
E. V. Sorokin ◽  
T. R. Tsareva

The informational article presents the results carried out in the Laboratory of Biotechnology Research Institute of Influenza original, promising development of drugs monoclonal antibodies, which are the basis of accurate diagnostic test systems, can be used to control the process of the evolution of pathogens flu and acute viral respiratory infections, as well as to create predictive models of their variability. The paper provides a list developed by the Research Institute of Influenza monoclonal antibodies and some examples of their use.


Author(s):  
Cecilia Johansson ◽  
Freja C. M. Kirsebom

AbstractViral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.


Author(s):  
Faezeh Abbaszadeh ◽  
Narges Eslami ◽  
Parisa Shiri Aghbash ◽  
Hamed Ebrahimzadeh Leylabadlo ◽  
Hossein Bannazadeh Baghi

: Viral respiratory infections are a leading cause of illness and mortality in all age groups worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has spread throughout the world, igniting the twenty-first century’s deadliest pandemic. Research has shown that phages, which are bacterial viruses, can help treat viral infections with the effect on the immune system and their antiviral activity. Phages have specific activity and affect only the target without any side effects on other parts of the human body. Human phage-related diseases have not been reported yet; therefore, phages can be a very safe treatment, especially in many viral infections. The results of clinical studies have a promising future regarding the use of phages. It is possible that the phages display technique aided in the production of SARS-CoV-2 specific antibodies against its viral protein, which prevented the virus from binding or replicating and preventing secondary microbial infections, which have been linked to many patient deaths. Furthermore, an effective antiviral vaccine can be produced by using the same technique. Given the growing number of coronaviruses cases around the world, in the present paper, we review the possible mechanisms of phages against the COVID-19 disease and the method that may be a solution to eliminate the virus.


2021 ◽  
Vol 5 (11) ◽  
pp. 762-767
Author(s):  
S.V. Nikolaeva ◽  
◽  
Yu.N. Khlypovka ◽  
V.A. Zavolozhin ◽  
E.K. Shushakova ◽  
...  

Respiratory viruses are the leading cause of pediatric morbidity and mortality worldwide. Rapid identification of a pathogen, epidemiological surveillance, description of symptoms, and the development of preventive and therapeutic measures are keystones to limit the spread of respiratory infections. Novel viruses with specific properties are regularly discovered. This paper addresses essential data on the most common viruses provoking acute respiratory infections, including whose in children and the pattern of their course. Conventionally, the most vital concern is flu. Influenza viruses provoke seasonal outbreaks, epidemics, and pandemics. Many studies demonstrate the role of rhinovirus C in the development of bronchiolitis and, subsequently, asthma. Severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and SARS-CoV-2 provoking COVID-19 were recently described. Knowledge of known and newly emerging viruses is crucial for timely adequate medical care. The authors discuss major therapeutic strategies for acute respiratory infections that provide a more favorable course of infectious inflammation irrespective of viral etiology. KEYWORDS: acute respiratory infections, influenza virus, rhinovirus, coronavirus, pneumonia, interferon. FOR CITATION: Nikolaeva S.V., Khlypovka Yu.N., Zavolozhin V.A. et al. Respiratory viral infections in children: modalities for pathogenic treatment. Russian Medical Inquiry. 2021;5(11):762–767 (in Russ.). DOI: 10.32364/2587-6821-2021-5-11-762-767.


2020 ◽  
Vol 12 (7) ◽  
pp. 133
Author(s):  
Eliza Miranda Ramos ◽  
Antônio Carlos de Abreu ◽  
Sandra Luzinete Félix de Freitas ◽  
Matheus Dullius de Lima ◽  
Francisco José Mendes dos Reis ◽  
...  

Viruses continued to emerge and bring challenges to the global public health system with emerging viruses with respiratory contagion. Previous studies have shown that the increased incidence of certain viral respiratory infections, including influenza and coronavirus, is associated with low levels of Vitamin D, zinc and iron. Elements such as iron, zinc and Vitamin D influence adaptive immunity by inhibiting the proliferation of B cells with differentiation and secretion of immunoglobulins that will supply the proliferation of T cells and this will result in a more pro-inflammatory response change.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mary K. McCarthy ◽  
Jason B. Weinberg

Viruses are frequent causes of respiratory infection, and viral respiratory infections are significant causes of hospitalization, morbidity, and sometimes mortality in a variety of patient populations. Lung inflammation induced by infection with common respiratory pathogens such as influenza and respiratory syncytial virus is accompanied by increased lung production of prostaglandins and leukotrienes, lipid mediators with a wide range of effects on host immune function. Deficiency or pharmacologic inhibition of prostaglandin and leukotriene production often results in a dampened inflammatory response to acute infection with a respiratory virus. These mediators may, therefore, serve as appealing therapeutic targets for disease caused by respiratory viral infection.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
Ana Heloneida de Araújo Morais ◽  
Jailane de Souza Aquino ◽  
Juliana Kelly da Silva-Maia ◽  
Sancha Helena de Lima Vale ◽  
Bruna Leal Lima Maciel ◽  
...  

Abstract COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was recognised by the WHO as a pandemic in 2020. Host preparation to combat the virus is an important strategy to avoid COVID-19 severity. Thus, the relationship between eating habits, nutritional status and their effects on the immune response and further implications in viral respiratory infections is an important topic discussed in this review. Malnutrition causes the most diverse alterations in the immune system, suppressing of the immune response and increasing the susceptibility to infections such as SARS-CoV-2. On the other hand, obesity induces low-grade chronic inflammation caused by excess adiposity, which increases angiotensin-converting enzyme 2. It decreases the immune response favouring SARS-CoV-2 virulence and promoting respiratory distress syndrome. The present review highlights the importance of food choices considering their inflammatory effects, consequently increasing the viral susceptibility observed in malnutrition and obesity. Healthy eating habits, micronutrients, bioactive compounds and probiotics are strategies for COVID-19 prevention. Therefore, a diversified and balanced diet can contribute to the improvement of the immune response to viral infections such as COVID-19.


2020 ◽  
Vol 13 (9) ◽  
pp. 236 ◽  
Author(s):  
Alexander Panossian ◽  
Thomas Brendler

The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.


Sign in / Sign up

Export Citation Format

Share Document