scholarly journals Machine Learning for Process Monitoring and Control of Hot-Melt Extrusion: Current State of the Art and Future Directions

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1432
Author(s):  
Nimra Munir ◽  
Michael Nugent ◽  
Darren Whitaker ◽  
Marion McAfee

In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing technology in the pharmaceutical industry, due to its various advantages over other fabrication routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by the Food and Drug Administration (FDA), many research studies have focused on implementing process analytical technology (PAT), including near-infrared (NIR), Raman, and UV–Vis, coupled with various machine learning algorithms, to monitor and control the HME process in real time. This review gives a comprehensive overview of the application of machine learning algorithms for HME processes, with a focus on pharmaceutical HME applications. The main current challenges in the application of machine learning algorithms for pharmaceutical processes are discussed, with potential future directions for the industry.

Author(s):  
Christian Knaak ◽  
Moritz Kröger ◽  
Frederic Schulze ◽  
Peter Abels ◽  
Arnold Gillner

An effective process monitoring strategy is a requirement for meeting the challenges posed by increasingly complex products and manufacturing processes. To address these needs, this study investigates a comprehensive scheme based on classical machine learning methods, deep learning algorithms, and feature extraction and selection techniques. In a first step, a novel deep learning architecture based on convolutional neural networks (CNN) and gated recurrent units (GRU) is introduced to predict the local weld quality based on mid-wave infrared (MWIR) and near-infrared (NIR) image data. The developed technology is used to discover critical welding defects including lack of fusion (false friends), sagging and lack of penetration, and geometric deviations of the weld seam. Additional work is conducted to investigate the significance of various geometrical, statistical, and spatio-temporal features extracted from the keyhole and weld pool regions. Furthermore, the performance of the proposed deep learning architecture is compared to that of classical supervised machine learning algorithms, such as multi-layer perceptron (MLP), logistic regression (LogReg), support vector machines (SVM), decision trees (DT), random forest (RF) and k-Nearest Neighbors (kNN). Optimal hyperparameters for each algorithm are determined by an extensive grid search. Ultimately, the three best classification models are combined into an ensemble classifier that yields the highest detection rates and achieves the most robust estimation of welding defects among all classifiers studied, which is validated on previously unknown welding trials.


Author(s):  
Yuri Andrei Gelsleichter ◽  
Lúcia Helena Cunha dos Anjos ◽  
Elias Mendes Costa ◽  
Gabriela Valente ◽  
Paula Debiasi ◽  
...  

Visible and near-infrared reflectance (Vis–NIR) techniques are a plausible method to soil analyses. The main objective of the study was to investigate the capacity to predicting soil properties Al, Ca, K, Mg, Na, P, pH, total carbon (TC), H and N, by using different spectral (350–2500 nm) pre-treatments and machine learning algorithms such as Artificial Neural Network (ANN), Random Forest (RF), Partial Least-squares Regression (PLSR) and Cubist (CB). The 300 soil samples were sampled in the upper part of the Itatiaia National Park (INP), located in Southeastern region of Brazil. The 10 K-fold cross validation was used with the models. The best spectral pre-treatment was the Inverse of Reflectance by a Factor of 104 (IRF4) for TC with CB, giving an averaged R² among the folds of 0.85, RMSE of 1.96; and 0.67 with 0.041 respectively for H. Into the K-folds models of TC, the highest prediction had a R² of 0.95. These results are relevant for the INP management plan, and also to similar environments. The good correlation with Vis–NIR techniques can be used for remote sense monitoring, especially in areas with very restricted access such as INP.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 472 ◽  
Author(s):  
Shruti Banerjee ◽  
Partha Sarathi Chakraborty ◽  
. .

SDN (Software Defined Network) is rapidly gaining importance of ‘programmable network’ infrastructure. The SDN architecture separates the Data plane (forwarding devices) and Control plane (controller of the SDN). This makes it easy to deploy new versions to the infrastructure and provides straightforward network virtualization. Distributed Denial-of-Service attack is a major cyber security threat to the SDN. It is equally vulnerable to both data plane and control plane. In this paper, machine learning algorithms such as Naïve Bayesian, KNN, K Means, K-Medoids, Linear Regression, use to classify the incoming traffic as usual or unusual. Above mentioned algorithms are measured using the two metrics: accuracy and detection rate. The best fit algorithm is applied to implement the signature IDS which forms the module 1 of the proposed IDS. Second Module uses open connections to state the exact node which is an attacker and to block that particular IP address by placing it in Access Control List (ACL), thus increasing the processing speed of SDN as a whole. 


2015 ◽  
Vol 496 (1) ◽  
pp. 117-123 ◽  
Author(s):  
A.L. Kelly ◽  
S.A. Halsey ◽  
R.A. Bottom ◽  
S. Korde ◽  
T. Gough ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document