infrared monitoring
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 2)

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3023
Author(s):  
Koray Tekin ◽  
Muhammed Enes İnanç ◽  
Doğukan Özen ◽  
Beste Cil ◽  
Kemal Tuna Olğaç ◽  
...  

This study aimed to describe the thermal variation of external reproductive tracts during ejaculation in relation to sperm quality in dogs. Forty-six adult fertile dogs were monitored using a thermal camera before, during and after the semen collection, taking into account penile and scrotal temperatures as reproductive thermal patterns while eye and perianal temperatures were recorded as complementary thermal patterns of behavioral response. The parameters were classified depending on age (≤4 years and >4 years), body weight (BW) (≤75 kg and >75 kg), sperm concentration (CON) (≤300 million and >300 million), total testicular volume (TTV) (≤600 cm3 and >600 cm3) and total ejaculation time (TET) (≤800 s and >800 s) of the animals from which semen was collected successfully. Heavier males (p < 0.05) that have more consistent testicles (p < 0.01) as well as quicker ejaculate responders (p < 0.001) and lower scrotal temperature had better semen (Δ motility) freezability. The lower eye temperature prior to the ejaculation (p < 0.01), lower scrotal temperature following ejaculation (p < 0.01), and conversely, higher penile temperature during the ejaculation (p < 0.001) had a higher sperm concentration. Furthermore, the sperm freezability was negatively correlated with total ejaculation time (r = −0.39, p < 0.05) and sperm abnormalities were lower in the ejaculate of dogs having a higher temperature of the scrotum, bulbus and penis. In conclusion, infrared monitoring throughout semen collection in dogs can provide information on behavioral reactions during human manipulation, as well as semen quality and testicular functionality.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1624
Author(s):  
Jacek Górka ◽  
Wojciech Jamrozik

For a low cost, there are industrial infrared monitoring systems used for imperfection detection and identification in welded joints. The key drawback that impedes real life industrial applications is the low spatial resolution, as well as the temporal resolution of low-cost infrared (IR) cameras. This is also the case in tungsten inert gas (TIG) welding. Taking into consideration the influence of voltage on the arc energy and heat input, high frequency sampled voltage was used to evaluate the interpolated temporal resolution of IR sequences. Additionally, a reflected temperature correction method was proposed to reduce the uncertainty of absolute temperature measurement with a thermographic camera. The proposed method was applied to detect several imperfection types, such as lack of or incomplete penetration as well as incorrect weld shape and size (including burnouts). Results obtained for different interpolation factors were compared. The obtained results emphasize the validity of reflected temperature correction method. For the weld defects detection task, the smallest detectable defect was found for various interpolation factors. Moreover, the correspondence of arc voltage and the joint temperature was checked. Additionally, a set of decision rules was elaborated on and applied to distinguish between various joint conditions. It was found that defects that do not have symmetrical temperature distribution with respect to the joint axis are harder to identify.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 320
Author(s):  
Yuki Moritani ◽  
Akiko Kawachi

Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259−63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some of which are caused by interactions with the compact object (e.g., tidal forces). Due to the high eccentricity and large orbit of these systems, the interactions—and, hence the resultant observables—depend on the orbital phase. To explore such variations, multi-band photometry and linear polarization were monitored for the three considered systems, using two 1.5 m-class telescopes: IRSF at the South African Astronomical Observatory and Kanata at the Higashi–Hiroshima Observatory.


Author(s):  
jiawang hao ◽  
lan qiao ◽  
zhanjin li ◽  
Qingwen Li

To predict the fractured rock failure under deep triaxial stress in advance, the true triaxial tests were carried out using thermal infrared monitoring and acoustic emission (AE). This paper proposes “infrared temperature jumping rate (ITJR)” to reflect the “jumpiness” of the temperature field matrix, and establishes an infrared advance prediction method. The results show that the high temperature area will converge and expand gradually, and cracks propagate along a certain direction. In the sudden temperature reduction area, the rock stripping is easy to occur. At the boundary between high-low temperature areas, it is easy to produce breakage cracks and form rock spalling. In the short quiet period, the rock gradually gathers strain energy, which will be released in the fracture period. By comparing the time of AE sudden increase with the time of ITJR mutation, it shows that the method has a good advance prediction effect for rock fracture.


2021 ◽  
pp. 1-1
Author(s):  
Aime Lay-Ekuakille ◽  
Cosimo Chiffi ◽  
Antonio Celesti ◽  
Md Zia Ur Rahman ◽  
Satya P. Singh
Keyword(s):  

Author(s):  
Alin Dragomir ◽  
Maricel Adam ◽  
Mihai Andrusca ◽  
Marian Atanasoaei ◽  
Ovidiu Rusu ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6556
Author(s):  
Sonia M. Garcia ◽  
Joana Ramos ◽  
Jon Iñaki Arrizubieta ◽  
Jordi Figueras

The paper presents the results of an analysis based on the photodiode monitoring signals obtained during the laser cutting of aluminum and stainless steel plates. The mean level of the monitoring signal was measured and related to the process parameters and the quality achieved. The investigation was conducted in the visible and infrared spectra simultaneously for each experiment and a similar behavior at both spectra was observed, concluding the existence of a relationship between the monitoring signal, the quality of the performed cut, and the characteristics of the cutting scenario. Both visible and infrared monitoring signals were found not to vary as long as the parameter used values ensuring that the cut quality was good. Nevertheless, their mean values tended to increase as the cutting quality became worse. The measured intensity of the visible spectrum signal was associated with the vapor plume formation during the cutting process, whereas the infrared signal was related to the temperatures reached.


2020 ◽  
Vol 494 (2) ◽  
pp. 2861-2874 ◽  
Author(s):  
Laura K Rogers ◽  
Siyi Xu (许偲艺) ◽  
Amy Bonsor ◽  
Simon Hodgkin ◽  
Kate Y L Su ◽  
...  

ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared.


Sign in / Sign up

Export Citation Format

Share Document