scholarly journals Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1962
Author(s):  
Ana Gomes ◽  
Lucinda J. Bessa ◽  
Iva Fernandes ◽  
Ricardo Ferraz ◽  
Cláudia Monteiro ◽  
...  

Efficient antibiotics are being exhausted, which compromises the treatment of infections, including complicated skin and skin structure infections (cSSTI) often associated with multidrug resistant (MDR) bacteria, methicillin-resistant S. aureus (MRSA) being the most prevalent. Antimicrobial peptides (AMP) are being increasingly regarded as the new hope for the post-antibiotic era. Thus, future management of cSSTI may include use of peptides that, on the one hand, behave as AMP and, on the other, are able to promote fast and correct skin rebuilding. As such, we combined the well-known cosmeceutical pentapeptide-4 (PP4), devoid of antimicrobial action but possessing collagenesis-boosting properties, with the AMP 3.1, to afford the chimeric peptide PP4-3.1. We further produced its N-methyl imidazole derivative, MeIm-PP4-3.1. Both peptide-based constructs were evaluated in vitro against Gram-negative bacteria, Gram-positive bacteria, and Candida spp. fungi. Additionally, the antibiofilm activity, the toxicity to human keratinocytes, and the activity against S. aureus in simulated wound fluid (SWF) were assessed. The chimeric peptide PP4-3.1 stood out for its potent activity against Gram-positive and Gram-negative bacteria, including against MDR clinical isolates (0.8 ≤ MIC ≤ 5.7 µM), both in planktonic form and in biofilm matrix. The peptide was also active against three clinically relevant species of Candida fungi, with an overall performance superior to that of fluconazole. Altogether, data reveal that PP4-3.1 is as a promising lead for the future development of new topical treatments for severe skin infections.

2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1271-1285
Author(s):  
Patricia Zimet ◽  
Ruby Valadez ◽  
Sofía Raffaelli ◽  
María Belén Estevez ◽  
Helena Pardo ◽  
...  

Microbial technology offers a green alternative for the synthesis of value-added nanomaterials. In particular, fungal compounds can improve silver nanoparticle production, stabilizing colloidal nanoparticles. Based on a previous study by our group, silver nanoparticles obtained using the extracellular cell-free extracts of Phanerochaete chrysosporium (PchNPs) have shown antimicrobial and antibiofilm activity against Gram-negative bacteria. Moreover, nisin—a bacteriocin widely used as a natural food preservative—has recently gained much attention due its antimicrobial action against Gram-positive bacteria in biomedical applications. Therefore, the aim of this work was to conjugate biogenic silver nanoparticles (PchNPs) with nisin to obtain nanoconjugates (PchNPs@nis) with enhanced antimicrobial properties. Characterization assays were conducted to determine physicochemical properties of PchNPs@nis, and also their antibacterial and antibiofilm activities were studied. The formation of PchNPs@nis was confirmed by UV-Vis, TEM, and Raman spectroscopy analysis. Different PchNPs@nis nanobioconjugates showed diameter values in the range of 60–130 nm by DLS and surface charge values between −20 and −13 mV. Nisin showed an excellent affinity to PchNPs, with binding efficiencies higher than 75%. Stable synthesized PchNPs@nis nanobioconjugates were not only able to inhibit biofilm formation by S. aureus, but also showed inhibition of the planktonic cell growth of Staphyloccocus aureus and Escherichia coli, broadening the spectrum of action of the unconjugated antimicrobials against Gram-positive and Gram-negative bacteria. In conclusion, these results show the promising application of PchNPs@nis, prepared via green technology, as potential antimicrobial nanomaterials.


2021 ◽  
Vol 206 (Supplement 3) ◽  
Author(s):  
Manish Narasimman ◽  
Gregory Plano ◽  
Jesse Ory ◽  
Sara Schesser Bartra ◽  
Ranjith Ramasamy

Chemotherapy ◽  
1998 ◽  
Vol 44 (2) ◽  
pp. 94-98 ◽  
Author(s):  
C. Gimeno ◽  
J. Borja ◽  
D. Navarro ◽  
L. Valdés ◽  
J. García-Barbal ◽  
...  

Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document