scholarly journals Biogenic Silver Nanoparticles Conjugated with Nisin: Improving the Antimicrobial and Antibiofilm Properties of Nanomaterials

Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1271-1285
Author(s):  
Patricia Zimet ◽  
Ruby Valadez ◽  
Sofía Raffaelli ◽  
María Belén Estevez ◽  
Helena Pardo ◽  
...  

Microbial technology offers a green alternative for the synthesis of value-added nanomaterials. In particular, fungal compounds can improve silver nanoparticle production, stabilizing colloidal nanoparticles. Based on a previous study by our group, silver nanoparticles obtained using the extracellular cell-free extracts of Phanerochaete chrysosporium (PchNPs) have shown antimicrobial and antibiofilm activity against Gram-negative bacteria. Moreover, nisin—a bacteriocin widely used as a natural food preservative—has recently gained much attention due its antimicrobial action against Gram-positive bacteria in biomedical applications. Therefore, the aim of this work was to conjugate biogenic silver nanoparticles (PchNPs) with nisin to obtain nanoconjugates (PchNPs@nis) with enhanced antimicrobial properties. Characterization assays were conducted to determine physicochemical properties of PchNPs@nis, and also their antibacterial and antibiofilm activities were studied. The formation of PchNPs@nis was confirmed by UV-Vis, TEM, and Raman spectroscopy analysis. Different PchNPs@nis nanobioconjugates showed diameter values in the range of 60–130 nm by DLS and surface charge values between −20 and −13 mV. Nisin showed an excellent affinity to PchNPs, with binding efficiencies higher than 75%. Stable synthesized PchNPs@nis nanobioconjugates were not only able to inhibit biofilm formation by S. aureus, but also showed inhibition of the planktonic cell growth of Staphyloccocus aureus and Escherichia coli, broadening the spectrum of action of the unconjugated antimicrobials against Gram-positive and Gram-negative bacteria. In conclusion, these results show the promising application of PchNPs@nis, prepared via green technology, as potential antimicrobial nanomaterials.

Author(s):  
Ahmed Mahdi Rheima ◽  
Mahdi A. Mohammed ◽  
Shaimaa Hamed Jaber ◽  
Shahad Abbas Hameed

The article describes a new way to the synthesis of silver nanoparticles based on UV-irradiation energy. Our technique allows for producing high quality and clean nanoparticles. Moreover, our photolysis approach allows us to synthesis silver nanoparticles (Ag NPs) with very low cost and short time. The nanostructures were characterized using X-ray diffraction, transmission electron spectroscopy and UV-visible spectrometer. Most of the Ag NPs are shown to be a hexagonal shape and some of them are a spherical shape. The average size of nanoparticles was calculated to be around 20.23 nm. The morphology, size, and ion concentration of the synthesized Ag NPs determine their absorbance and transmittance at the UV region of spectrum. Silver's antimicrobial properties are well known and due to their antimicrobial activity, silver nanoparticles become more important. Therefore, our synthesized Ag NPs were used against Staphylococcus aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria). The results show that the nanoparticles at a concentration of 0.2 mg/ml demonstrated a high activity of antimicrobials, resulting in a good inhibition for both grams positive and negative bacteria. However, the effect of Ag NPs on gram-positive bacteria is higher than gram-negative bacteria.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2014 ◽  
Vol 31 ◽  
pp. S66-S67 ◽  
Author(s):  
Mayri Alejandra Diaz De Rienzo ◽  
Ben Dolman ◽  
Fernando Guzman ◽  
Candice Kaisermann ◽  
James Winterburn ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 348-354
Author(s):  
Aliyu Shehu ◽  
Ahmed Salisu ◽  
Nura S. Gwaram

In this study, the antimicrobial and physicochemical properties of translucent antimicrobial soap prepared using two medicinal plants, Aloe vera gel and Ziziphus jujube leaf extract   was evaluated. The results of the physicochemical analysis showed the pH (7.52±0.02), hardness(1.3 cm±0.02), solubility (0.82 g±0.02) and foamability (6.80 cm±0.03) of the prepared soap and these values were within the acceptable limit  set by WHO/SON which make the prepared soap skin-friendly. Similarly, the antimicrobial screening was carried out on selected Gram-positive and gram-negative bacteria as well as on fungi species using disc diffusion methods and the results showed varying antimicrobial activity at different concentrations ranging from 62.5-500 mg/ml. However, the susceptibility of test bacteria in terms of the zone of inhibition at 500mg/ml of the soap was observed on Staphylococcus lentus (22 mm), Staphylococcus aureus (20mm), Escherichia coli (15 mm), Raoltella ornithinolytica (12mm). The result of antifungal properties was as follows,  Candida albicans (12 mm), Trichophyton rubrum (12 mm), and Aspergillus nigar (10 mm)  at 500 mg/ml concentration. The results when compared to other antimicrobial soap in the market indicate good quality by inhibiting the growth of both Gram-positive, gram-negative bacteria and fungi. The antimicrobial activities exhibited by the soap in this study could be attributed to the presence of phytochemical constituents in the plant extracts, which signify the potential of the soap as an antimicrobial agent. Therefore, these findings confirmed the efficacy of Aloe vera gel and Zizipus jujube extract in traditional medicine.


2022 ◽  
Vol 12 (2) ◽  
pp. 710
Author(s):  
Fohad Mabood Husain ◽  
Faizan Abul Qais ◽  
Iqbal Ahmad ◽  
Mohammed Jamal Hakeem ◽  
Mohammad Hassan Baig ◽  
...  

Global emergence and persistence of the multidrug-resistant microbes have created a new problem for management of diseases associated with infections. The development of antimicrobial resistance is mainly due to the sub-judicious and unprescribed used of antimicrobials both in healthcare and the environment. Biofilms are important due to their role in microbial infections and hence are considered a novel target in discovery of new antibacterial or antibiofilm agents. In this article, zinc oxide nanoparticles (ZnO-NPs) were prepared using extract of Plumbago zeylanica. ZnO-NPs were characterized and then their antibiofilm activity was tested against Gram-positive and Gram-negative bacteria. The ZnO-NPs were polydispersed, and the average size was obtained as 24.62 nm. The presence of many functional groups indicated that phytocompounds of P. zeylanica were responsible for the synthesis, capping, and stabilization of ZnO-NPs. Synthesized NPs inhibited the biofilm formation of E. coli, S. aureus, and P. aeruginosa by 62.80%, 71.57%, and 77.69%, respectively. Likewise, concentration-dependent inhibition of the EPS production was recorded in all test bacteria. Microscopic examination of the biofilms revealed that ZnO-NPs reduced the bacterial colonization on solid support and altered the architecture of the biofilms. ZnO-NPs also remarkably eradicated the preformed biofilms of the test bacteria up to 52.69%, 59.79%, and 67.22% recorded for E. coli, S. aureus, P. aeruginosa, respectively. The findings reveal the ability of green synthesized zinc oxide nanoparticles to inhibit, as well as eradicate, the biofilms of Gram-positive and Gram-negative bacteria.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1962
Author(s):  
Ana Gomes ◽  
Lucinda J. Bessa ◽  
Iva Fernandes ◽  
Ricardo Ferraz ◽  
Cláudia Monteiro ◽  
...  

Efficient antibiotics are being exhausted, which compromises the treatment of infections, including complicated skin and skin structure infections (cSSTI) often associated with multidrug resistant (MDR) bacteria, methicillin-resistant S. aureus (MRSA) being the most prevalent. Antimicrobial peptides (AMP) are being increasingly regarded as the new hope for the post-antibiotic era. Thus, future management of cSSTI may include use of peptides that, on the one hand, behave as AMP and, on the other, are able to promote fast and correct skin rebuilding. As such, we combined the well-known cosmeceutical pentapeptide-4 (PP4), devoid of antimicrobial action but possessing collagenesis-boosting properties, with the AMP 3.1, to afford the chimeric peptide PP4-3.1. We further produced its N-methyl imidazole derivative, MeIm-PP4-3.1. Both peptide-based constructs were evaluated in vitro against Gram-negative bacteria, Gram-positive bacteria, and Candida spp. fungi. Additionally, the antibiofilm activity, the toxicity to human keratinocytes, and the activity against S. aureus in simulated wound fluid (SWF) were assessed. The chimeric peptide PP4-3.1 stood out for its potent activity against Gram-positive and Gram-negative bacteria, including against MDR clinical isolates (0.8 ≤ MIC ≤ 5.7 µM), both in planktonic form and in biofilm matrix. The peptide was also active against three clinically relevant species of Candida fungi, with an overall performance superior to that of fluconazole. Altogether, data reveal that PP4-3.1 is as a promising lead for the future development of new topical treatments for severe skin infections.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Marcin Rozalski ◽  
Bartlomiej Micota ◽  
Beata Sadowska ◽  
Anna Stochmal ◽  
Dariusz Jedrejek ◽  
...  

New antimicrobial properties of products derived fromHumulus lupulusL. such as antiadherent and antibiofilm activities were evaluated. The growth of gram-positive but not gram-negative bacteria was inhibited to different extents by these compounds. An extract of hop cones containing 51% xanthohumol was slightly less active againstS. aureusstrains (MIC range 31.2–125.0 μg/mL) than pure xanthohumol (MIC range 15.6–62.5 μg/mL). The spent hop extract, free of xanthohumol, exhibited lower but still relevant activity (MIC range 1-2 mg/mL). There were positive coactions of hop cone, spent hop extracts, and xanthohumol with oxacillin against MSSA and with linezolid against MSSA and MRSA. Plant compounds in the culture medium at sub-MIC concentrations decreased the adhesion ofStaphylococcito abiotic surfaces, which in turn caused inhibition of biofilm formation. The rate of mature biofilm eradication by these products was significant. The spent hop extract at MIC reduced biofilm viability by 42.8%, the hop cone extract by 74.8%, and pure xanthohumol by 86.5%. When the hop cone extract or xanthohumol concentration was increased, almost complete biofilm eradication was achieved (97–99%). This study reveals the potent antibiofilm activity of hop-derived compounds for the first time.


Sign in / Sign up

Export Citation Format

Share Document