scholarly journals Dual-Band, Polarization-Insensitive, Ultrathin and Flexible Metamaterial Absorber Based on High-Order Magnetic Resonance

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 574
Author(s):  
Duong Thi Ha ◽  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
Thanh Son Pham ◽  
Nguyen Thanh Tung ◽  
...  

We demonstrate a dual-band, polarization-insensitive, ultrathin and flexible metamaterial absorber (MA), based on high-order magnetic resonance. By exploiting a flexible polyimide substrate, the thickness of MA came to be 1/148 of the working wavelength. The absorption performance of the proposed structure was investigated for both planar and bending models. In the case of the planar model, a single peak was achieved at a frequency of 4.3 GHz, with an absorption of 98%. Furthermore, additional high-order absorption peaks were obtained by the bending structure on a cylindrical surface, while the fundamental peak with a high absorption was maintained well. Our work might be useful for the realization and the development of future devices, such as emitters, detectors, sensors, and energy converters.

2021 ◽  
Author(s):  
Huan Liu ◽  
Rui Wang ◽  
Junyao Wang ◽  
Tianhong Lang ◽  
Bowen Cui

Abstract In this paper, an ultrathin dual-band metamaterial absorber (MMA) is designed. Its top layer consists of two nested split-ring resonators. The calculation result demonstrates that there are two distinct absorption peaks, which are 9.258GHz and 21.336GHz, with absorption rate of 99.78% and 96.91%. It also show polarization-insensitive for normal incident and its thickness is only 1.96% of the wavelength of its lowest absorption frequency. Moreover, we explore the MMA’s absorption mechanism and analyze the influence of main structural parameters on the MMA’s absorption characteristics. The proposed MMA has simple structure and high absorption, it can be applied in electromagnetic stealth, bolometers, sensor and other fields.


Optik ◽  
2021 ◽  
pp. 167669
Author(s):  
Dac Tuyen Le ◽  
Ba Tuan Tong ◽  
Thi Kim Thu Nguyen ◽  
Thanh Nghia Cao ◽  
Hong Quang Nguyen ◽  
...  

2015 ◽  
Vol 32 (6) ◽  
pp. 068101 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Tong-Tong Li ◽  
Huan-Huan Lv ◽  
Xiao-Yan Huang ◽  
Xiao Zhang ◽  
...  

2016 ◽  
Vol 59 (2) ◽  
pp. 348-353 ◽  
Author(s):  
Sameer Kumar Sharma ◽  
Saptarshi Ghosh ◽  
Kumar Vaibhav Srivastava ◽  
Anuj Shukla

2016 ◽  
Vol 707 ◽  
pp. 125-130
Author(s):  
Chun Sheng Tian ◽  
Kai Zhou ◽  
You Lin Guan

In order to improve the stealth performance of antenna, a metamaterial absorber with high absorption, polarization-insensitive and wide angle based on the electromagnetic resonance is designed. Using of ultra-thin characteristic of absorber, they are attached to the microstrip antenna to reduce its radar cross section. The simulation results show that the new microstrip antenna’s radiation performance remains unchanged compared with conventional microstrip antenna and it has obvious RCS reduction in its working band. While the maximum reduction can reach 28dB at working frequency, and the in-band reduction of antenna is above 3dB. This indicates that the absorber can be used for antennas’ in-band stealth.


2011 ◽  
Vol 36 (6) ◽  
pp. 945 ◽  
Author(s):  
Yong Ma ◽  
Qin Chen ◽  
James Grant ◽  
Shimul C. Saha ◽  
A. Khalid ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Ali F. Almutairi ◽  
Mohd Fais Mansor ◽  
Mohammad Tariqul Islam

AbstractPolarization insensitive metamaterial absorbers (MA) are currently very attractive due to their unique absorption properties at different polarization angles. As a result, this type of absorber is widely used in sensing, imaging, energy harvesting, etc. This paper presents the design and characterization of a dual-band polarization-insensitive metamaterial absorber (MA) for K-band applications. The metamaterial absorber consists of two modified split ring resonators with an inner cross conductor to achieve a 90% absorption bandwidth of 400 MHz (21.4–21.8 GHz) and 760 MHz (23.84–24.24 GHz) at transverse electromagnetic (TEM), transverse electric (TE), and transverse magnetic (TM) mode. Polarization insensitivity of different incident angles for TE and TM mode is also investigated, which reveals a similar absorption behavior up to 90°. The metamaterial structure generates single negative (SNG) property at a lower frequency of 21.6 GHz and double negative property (DNG) at an upper frequency of 24.04 GHz. The permittivity and pressure sensor application are investigated for the proposed absorber, which shows its useability in these applications. Finally, a comparison with recent works is also performed to demonstrate the feasibility of the proposed structure for K band application, like sensor, filter, invasive clock, etc.


Author(s):  
Shuguang Fang ◽  
Lianwen Deng ◽  
Pin Zhang ◽  
Lei-Lei Qiu ◽  
Haipeng Xie ◽  
...  

Abstract In this paper, two kinds of dual-band metamaterial absorbers (MMAs) with stable absorption performance based on fractal structures are proposed. As the key feature, with the increase in fractal order, the fractal MMAs can reduce the weight while keeping the absorption performance. The multi-band absorption property is analyzed by multiple L-C resonances generated by the fractal structure. By virtue of good impedance matching characteristics and the synergy of the circuit and electromagnetic resonance, effective and stable microwave absorption is readily achieved. Finally, two prototypes are fabricated for demonstration, and the measurement result is consistent well with the simulation one. As expected, the proposed fractal MMAs have the advantage of low-cost, light-weight, and dual-effective absorption bands, and have great potential in the application of multi-band radar stealth.


2013 ◽  
Vol 55 (7) ◽  
pp. 1606-1609 ◽  
Author(s):  
Huiqing Zhai ◽  
Zhenhua Li ◽  
Long Li ◽  
Changhong Liang

Sign in / Sign up

Export Citation Format

Share Document