scholarly journals Polarization insensitivity characterization of dual-band perfect metamaterial absorber for K band sensing applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Lutful Hakim ◽  
Touhidul Alam ◽  
Ali F. Almutairi ◽  
Mohd Fais Mansor ◽  
Mohammad Tariqul Islam

AbstractPolarization insensitive metamaterial absorbers (MA) are currently very attractive due to their unique absorption properties at different polarization angles. As a result, this type of absorber is widely used in sensing, imaging, energy harvesting, etc. This paper presents the design and characterization of a dual-band polarization-insensitive metamaterial absorber (MA) for K-band applications. The metamaterial absorber consists of two modified split ring resonators with an inner cross conductor to achieve a 90% absorption bandwidth of 400 MHz (21.4–21.8 GHz) and 760 MHz (23.84–24.24 GHz) at transverse electromagnetic (TEM), transverse electric (TE), and transverse magnetic (TM) mode. Polarization insensitivity of different incident angles for TE and TM mode is also investigated, which reveals a similar absorption behavior up to 90°. The metamaterial structure generates single negative (SNG) property at a lower frequency of 21.6 GHz and double negative property (DNG) at an upper frequency of 24.04 GHz. The permittivity and pressure sensor application are investigated for the proposed absorber, which shows its useability in these applications. Finally, a comparison with recent works is also performed to demonstrate the feasibility of the proposed structure for K band application, like sensor, filter, invasive clock, etc.

2021 ◽  
Author(s):  
Huan Liu ◽  
Rui Wang ◽  
Junyao Wang ◽  
Tianhong Lang ◽  
Bowen Cui

Abstract In this paper, an ultrathin dual-band metamaterial absorber (MMA) is designed. Its top layer consists of two nested split-ring resonators. The calculation result demonstrates that there are two distinct absorption peaks, which are 9.258GHz and 21.336GHz, with absorption rate of 99.78% and 96.91%. It also show polarization-insensitive for normal incident and its thickness is only 1.96% of the wavelength of its lowest absorption frequency. Moreover, we explore the MMA’s absorption mechanism and analyze the influence of main structural parameters on the MMA’s absorption characteristics. The proposed MMA has simple structure and high absorption, it can be applied in electromagnetic stealth, bolometers, sensor and other fields.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4209 ◽  
Author(s):  
Ahasanul Hoque ◽  
Mohammad Tariqul Islam ◽  
Ali Almutairi ◽  
Touhidul Alam ◽  
Mandeep Jit Singh ◽  
...  

In this paper, a dual-band metamaterial absorber (MMA) ring with a mirror reflexed C-shape is introduced for X and Ku band sensing applications. The proposed metamaterial consists of two square ring resonators and a mirror reflexed C-shape, which reveals two distinctive absorption bands in the electromagnetic wave spectrum. The mechanism of the two-band absorber particularly demonstrates two resonance frequencies and absorption was analyzed using a quasi-TEM field distribution. The absorption can be tunable by changing the size of the metallic ring in the frequency spectrum. Design and analysis of the proposed meta-absorber was performed using the finite-integration technique (FIT)-based CST microwave studio simulation software. Two specific absorption peaks value of 99.6% and 99.14% are achieved at 13.78 GHz and 15.3 GHz, respectively. The absorption results have been measured and compared with computational results. The proposed dual-band absorber has potential applications in sensing techniques for satellite communication and radar systems.


Optik ◽  
2021 ◽  
pp. 167669
Author(s):  
Dac Tuyen Le ◽  
Ba Tuan Tong ◽  
Thi Kim Thu Nguyen ◽  
Thanh Nghia Cao ◽  
Hong Quang Nguyen ◽  
...  

2021 ◽  
Author(s):  
Muhammad Fahim Zafar ◽  
Usman Masud

Abstract Developing a highly efficient and multiple-bands metamaterial absorber is a hot issue in recent era. In this paper, A multiple-bands metamaterial absorber has been presented which is based in X, Ku and K-band. Firstly, we have designed two single layer basic unit cell of X-shape and cross-shape, then they are arranged in the multi-layers structure form for the purpose of obtaining multiple- bands and wide band absorption. The proposed absorber is able to work in multiple bands because it has six peaks in the frequency range of 8–24 GHz with having near perfect absorption. Moreover, the sixth peak has a wideband absorption which is 2.93 GHz. Furthermore, the proposed absorber is also tested for polarization insensitivity and also for oblique incidence. Absorption was found polarization insensitive with almost perfect absorption.


2015 ◽  
Vol 32 (6) ◽  
pp. 068101 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Tong-Tong Li ◽  
Huan-Huan Lv ◽  
Xiao-Yan Huang ◽  
Xiao Zhang ◽  
...  

2016 ◽  
Vol 59 (2) ◽  
pp. 348-353 ◽  
Author(s):  
Sameer Kumar Sharma ◽  
Saptarshi Ghosh ◽  
Kumar Vaibhav Srivastava ◽  
Anuj Shukla

2011 ◽  
Vol 115 ◽  
pp. 381-397 ◽  
Author(s):  
Xun-Jun He ◽  
Yue Wang ◽  
Jianmin Wang ◽  
Tailong Gui ◽  
Qun Wu

2011 ◽  
Vol 36 (6) ◽  
pp. 945 ◽  
Author(s):  
Yong Ma ◽  
Qin Chen ◽  
James Grant ◽  
Shimul C. Saha ◽  
A. Khalid ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 574
Author(s):  
Duong Thi Ha ◽  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
Thanh Son Pham ◽  
Nguyen Thanh Tung ◽  
...  

We demonstrate a dual-band, polarization-insensitive, ultrathin and flexible metamaterial absorber (MA), based on high-order magnetic resonance. By exploiting a flexible polyimide substrate, the thickness of MA came to be 1/148 of the working wavelength. The absorption performance of the proposed structure was investigated for both planar and bending models. In the case of the planar model, a single peak was achieved at a frequency of 4.3 GHz, with an absorption of 98%. Furthermore, additional high-order absorption peaks were obtained by the bending structure on a cylindrical surface, while the fundamental peak with a high absorption was maintained well. Our work might be useful for the realization and the development of future devices, such as emitters, detectors, sensors, and energy converters.


Sign in / Sign up

Export Citation Format

Share Document