scholarly journals Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars

Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 302-319
Author(s):  
Sukrit Jaiswal ◽  
Debarati Chatterjee

In this paper, an investigation of the role of nuclear saturation parameters on f-mode oscillations in neutron stars is performed within the Cowling approximation. It is found that the uncertainty in the effective nucleon mass plays a dominant role in controlling the f-mode frequencies. The effect of the uncertainties in saturation parameters on previously-proposed empirical relations of the frequencies with astrophysical observables relevant for asteroseismology are also investigated. These results can serve as an important tool for constraining the nuclear parameter space and understand the behaviour of dense nuclear matter from the future detection of f-modes.

2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


Author(s):  
J.M. Lattimer

Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 1667 ◽  
pp. 012001
Author(s):  
Nicolas Baillot d’Étivaux ◽  
Jérôme Margueron ◽  
Sebastien Guillot ◽  
Natalie Webb ◽  
Màrcio Catelan ◽  
...  

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


2004 ◽  
Vol 13 (07) ◽  
pp. 1519-1524 ◽  
Author(s):  
VERÔNICA A. DEXHEIMER ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MOISÉS RAZEIRA ◽  
MANFRED DILLIG

For the nuclear many body problem at high densities, formulated in the framework of a relativistic mean-field theory, we investigate in detail the compression modulus of nuclear matter as a function of the effective nucleon mass. We include consistently in our modelling chemical equilibrium as well as baryon number and electric charge conservation and investigate properties of neutron stars. Among other predictions we focus on the dependence of the maximum mass of a sequence of neutron stars as a function of the compression modulus and the nucleon effective mass.


2010 ◽  
Vol 19 (12) ◽  
pp. 2293-2300
Author(s):  
A. W. Thomas

We review recent progress in our understanding of the role of strange quarks in the structure of the nucleon. For the contribution to its mass the result is remarkably small, an order of magnitude smaller than commonly assumed. This has profound consequences for the searches for dark matter which are currently underway. There has also been remarkable progress in the understanding of hypernuclei. In particular, there is a very natural explanation at the quark level of why Λ-hypernuclei are bound whereas Σ-hypernuclei are not. The consequences for dense matter, for example in neutron stars, are not yet fully understood but we know they are significant.


1978 ◽  
Vol 77 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Y. Futami ◽  
H. Toki ◽  
W. Weise

2002 ◽  
Vol 17 (21) ◽  
pp. 1335-1344 ◽  
Author(s):  
S. S. POCHA ◽  
A. R. TAURINES ◽  
C. A. Z. VASCONCELLOS ◽  
M. B. PINTO ◽  
M. DILLIG

The influence of nonlinear cubic and quartic self-couplings of the scalar meson field in nuclear matter is investigated. In summing the leading tadpole corrections for the Dirac-vacuum, we compare two approaches, the modified relativistic Hartree approximation, applied to the Walecka model, and the relativistic Hartree approximation, employed to the nonlinear model, respectively. These two approaches render similar expressions for the equation of state of nuclear matter up to the fifth order in the scalar meson field. We find that, by exploring the parameter dependence of the two models, they yield similar results for the bulk static properties of nuclear matter. However, increasing the baryon density the two models start to deviate significantly, such as in the predictions for the maximal mass of a neutron star or in the role of hyperon degrees of freedom in dense matter. The results indicate that with increasing density, scalar meson self-couplings beyond the fourth order seem to play a significant role.


Sign in / Sign up

Export Citation Format

Share Document