scholarly journals Indirect Somatic Embryogenesis and Cryopreservation of Agave tequilana Weber Cultivar ‘Chato’

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Lourdes Delgado-Aceves ◽  
María Teresa González-Arnao ◽  
Fernando Santacruz-Ruvalcaba ◽  
Raquel Folgado ◽  
Liberato Portillo

Agave tequilana Weber cultivar ‘Chato’ represents an important genetic supply of wild severely in decline populations of ‘Chato’ for breeding and transformation programs. In this work, the indirect somatic embryogenesis and cryopreservation of Somatic Embryos (SEs) were investigated using the ‘Chato’ cultivar as a study case. Methods: Embryogenic calli were induced by the cultivation of 1 cm of young leaves from in vitro plants on MS semisolid medium supplemented with 24.84, 33.13, 41.41, 49.69, and 57.98 μM 4-amino-3,5,6-trichloro-2- pyridinecarboxylic acid (picloram) in combination with 2.21, 3.32, and 4.43 μM 6-benzylaminopurine (BAP). The origin and structure of formed SEs were verified by histological analysis. Cryopreservation studies of SEs were performed following the V-cryoplate technique and using for dehydration two vitrification solutions (PVS2 and PVS3). Results: The highest average (52.43 ± 5.74) of produced SEs and the Embryo Forming Capacity (estimated index 52.43) were obtained using 49.69 µM picloram and 3.32 µM BAP in the culture medium. The highest post-cryopreservation regrowth (83%) and plant conversion rate (around 70%) were achieved with PVS2 at 0 °C for 15 min. Conclusion: Our work provides new advances about somatic embryogenesis in Agave and reports the first results on cryopreservation of SEs of this species.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1536
Author(s):  
João Paulo de Morais Oliveira ◽  
Natália Arruda Sanglard ◽  
Adésio Ferreira ◽  
Wellington Ronildo Clarindo

Coffea arabica genotypes present distinct responses in vitro, and somaclonal variation occurrence has been reported. Global cytosine methylation is one of the epigenetic mechanisms that influences the Coffea in vitro responses. We aimed to establish the indirect somatic embryogenesis in C. arabica ‘Catuaí Vermelho’, ‘Caturra’ and ‘Oeiras’, associate the distinct responses to the methylated cytosine genomic level, and check the ploidy stability. Leaf explants were cultured in callus induction and proliferation medium. The resulted calli were transferred to the regeneration medium, and the mature cotyledonary somatic embryos were transferred to the seedling medium. ‘Oeiras’ exhibited the highest number of responsive leaf explants, followed by ‘Caturra’ and ‘Catuaí Vermelho’. Global methylated cytosine level increased over time in the ‘Catuaí Vermelho’ and ‘Caturra’ friable calli, remaining constant in ‘Oeiras’. ‘Oeiras’ did not regenerate somatic embryos, while ‘Catuaí Vermelho’ exhibited the highest number. Somatic embryo regeneration was associated with the increase of the methylated cytosine level. However, the ‘Catuaí Vermelho’ embryogenic calli showed a lower methylated cytosine level than ‘Caturra’. Recovered plantlets exhibited the same 2C value and chromosome number to the explant donors. Therefore, cytosine hypermethylation occurred during C. arabica indirect somatic embryogenesis, influencing cell competence and somatic embryos regeneration.



2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Dwi Hapsoro ◽  
Rahmadyah Hamiranti ◽  
Yusnita Yusnita

Abstract. Hapsoro D, Hamiranti R, Yusnita Y. 2020. In vitro somatic embryogenesis of superior clones of robusta coffee from Lampung, Indonesia: Effect of genotypes and callus induction media. Biodiversitas 21: 3811-3817. This study aimed to investigate the effects of genotypes and primary callus induction media on somatic embryogenesis of superior robusta coffee clones of Lampung. Leaf explants of clones Tugusari, Komari, Tugino, and Wanto were cultured on two types of primary callus induction media (PCIM). PCIM1 consisted of half-strength MS salts, 30 gL-1 sucrose, added with (mgL-1) 0.1 thiamine-HCl, 0.5 nicotinic acids, 0.5 pyridoxine-HCl, 100 Myo-inositol, 200 ascorbic acids, 150 citric acids, and 1 benzyl adenine. PCIM2 consisted of NPCM salts, 30 gL-1 sucrose, added with (mgL-1) 15 thiamine-HCl, 1 nicotinic acid, 1 pyridoxine-HCl, 2 glycines, 130 Myo-inositol, 200 ascorbic acids, 150 citric acids, 1 2,4-dichlorophenoxyacetic acid, and 2 thidiazuron. The highest percentage (100%) of primary callus formation was found in Komari and Wanto clones. PCIM2 resulted in more primary calli than PCIM1. When subcultured to embryogenic callus induction medium, primary calli of clone Komari and Wanto developed into a high percentage of embryogenic calli, while those of the other two turned brown and died. PCIM2-derived primary calli developed into more embryogenic calli. When subcultured on somatic embryo (SE) regeneration medium, these calli underwent the formation of SE of various stages. When subcultured to plant regeneration medium, these SEs developed into plantlets.



Author(s):  
Tammy Estabrooks ◽  
Zhongmin Dong

Somatic embryogenesis is the process by which somatic cells are induced into an embryogenic state, followed by differentiation into embryos. Somatic embryogenesis, in addition to being a method of propagation, can serve as an experimental tool for research into plant embryo development. This is a review of the current literature on in vitro plant somatic embryogenesis and the molecular advances made to identify genes expressed during the various stages of this process. Some factors hindering the elucidation of the molecular mechanisms underlying somatic embryogenesis are discussed.L’embryogenèse somatique est le processus par lequel les cellules somatiques passent à l’état embryogène et se différencient en embryons. En plus de constituer une méthode de propagation, elle peut servir d’outil expérimental de recherche pour développer des embryons de plantes. Le présent document est une revue de la documentation sur l’embryogenèse somatique végétale in vitro et sur les progrès réalisés à l’échelle moléculaire pour identifier les gènes exprimés au cours des divers stades du processus. On examine aussi certains facteurs qui rendent difficile l’élucidation des mécanismes moléculaires de l’embryogenèse somatique.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jingli Yang ◽  
Songquan Wu ◽  
Chenghao Li

Embryogenic callus was obtained from mature seed explants on medium supplemented with 2,4-dichlorophenoxyacetic acid. Primary somatic embryos (SEs) can only develop into abnormal plants. Well-developed SEs could be obtained through secondary somatic embryogenesis both in solid and liquid cultures. Temperature strongly affected induction frequency of secondary embryogenesis. Relatively high temperature (30∘C) and germinated SEs explants were effective for induction of secondary somatic embryos, and low temperature (20∘C) was more suitable for further embryo development, plantlet conversion, and transplant survival. Somatic embryos formed on agar medium had larger cotyledons than those of embryos formed in liquid medium. Supplementing 0.1 mg L−16-benzyladenine (BA) was effective for plant conversion; the rate of plant conversion was 43.3% in somatic embryos from solid culture and 36.5% in embryos from liquid culture.In vitroplants were successfully acclimatized in the greenhouse. The protocol established in this study will be helpful for large-scale vegetative propagation of this medicinal tree.



2015 ◽  
Vol 14 (15) ◽  
pp. 1261-1274 ◽  
Author(s):  
Sagwa Mulanda Eliud ◽  
Chuhila Yeremia ◽  
Musumba Awori Ryan ◽  
Ochieng Adero Mark ◽  
Onzere Amugune Nelson ◽  
...  


2020 ◽  
Vol 88 (2) ◽  
Author(s):  
Rizka Tamania SAPTARI ◽  
Masna Maya SINTA ◽  
Imron RIYADI ◽  
. PRIYONO ◽  
. SUMARYONO

The cultivation of date palm in Indonesia has increased since the last decade. However, the superior date palm seedlings are still limited and most of them are imported from other countries. The mass supply of superior date palm seedlings can be provided by in vitro propagation in the bioreactor. Therefore, the research was conducted to develop a protocol of date palm in vitro propagation by using Temporary Immersion Bioreactor (TIB). The in vitro propagation was carried out through somatic embryogenesis technique using meristematic tissues isolated from offshoots of date palm female clone cv. Zambli as explants. The explants were sterilized and then cultured to produce embryogenic calli and somatic embryos. Afterwards, somatic embryos germination and plantlets formation were conducted in TIB with treatments of immersion period: 3, 10, and 30 minutes every 6 hours, with 8 replications, The results showed that the optimal somatic embryo germination in TIB was with the immersion period of 30 min every 6 h, resulting in the most formation of shoots and fresh biomass weight increment up to nearly threefold in 6 weeks. Thereafter, plantlets formation in TIB with immersion period of 10 min and 30 min every 6 h exhibited similar performances in producing more plantlets with higher total fresh weight and better vigor than those of 3 min every 6 h. However, there were more rooted plantlets in the TIB with immersion period of 10 min every 6 h. Based on the results, an in vitro propagation protocol via somatic embryogenesis in TIB has been successfully developed for mass propagation of date palm cv. Zambli, which produced plantlets with good vigor and rooting.



2015 ◽  
Vol 2 (2) ◽  
pp. 5-9
Author(s):  
Ni Made Armini Wiendi ◽  
Mondjeli Constantin ◽  
Ade Wachyar

This study reported in vitro embryogenesis of oil palm using young leaves as explants. Explants were grown in solid modified MS or Eeuwens medium containing different concentrations of NAA and 2,4-D, i.e. media C1, C2, C3, C4 and C5, M1, M2, M3 and M4, to induce embryogenic calli. Compact and pearly-white, globular calli were obtained from the youngest leaf explants 28 weeks after culture.C1 media (MS medium + 107.41 µM of NAA + 100 mg.L-1 of asparagine + 100 mg.L of glutamine-1) produced the highest percentage of calli formation (30.56%), whereas C4 media (C1 supplemented with 67.86 µM of 2,-D ) was the optimal media for embryogenic callus induction. Direct embryoids were obtained from slightly older leaf explants on the C3 media containing NAA after 36 weeks of culture. However, four subcultures using the same medium with gradual reduction of auxin concentration were not successful to develop embryogenic callus and embryoid cells during the course of this study.  



Author(s):  
Alejandro Hernández-Soto ◽  
Jason Pérez-Chávez ◽  
Rebeca Fait-Zuñiga ◽  
Randall Rojas-Vásquez ◽  
Andres Gatica-Arias ◽  
...  

The development of gamma rays mutant rice lines would be a solution for introducing variability in already farmer using varieties. In vitro gamma (60Co) mutagenesis reduces chimeras and allows a faster selection of desired traits but requires laboratory process optimization. The objective of the present work was the in vitro establishment of a recalcitrant rice embryogenic calli, the determination of its sensitivity to gamma radiation (Co-60), sequencing MATK and Rubisco for identification purposes, as well as generation optimization. The radiosensitivity of embryogenic calli resulted in an LD50 of 110Gy, while the 20% lethal dose was 64Gy. All sequenced genes matched perfectly with already reported MATK and Rubisco O. sativa genes with a clear SNP that identifies the local variety related to the southeast Asia Region. Callus induction improves with an MS with 2mg/L 2,4D, and the regeneration was achieved with an MS medium with 3mg/L BAP and 0,5mg/L NAA. The optimized radiation condition was 60Gy with an 83% regeneration in a semisolid medium, allowing a balance between mutation and regeneration. When increased to 80Gy, the regeneration rate falls to 29%. An immersion system (RITA®) of either 60 or 120 seconds every 8hours allowed a systematic and homogeneous total regeneration of the recalcitrant line, in contrast with the semisolid medium that resulted in positive but irregular regeneration. Other well-known recalcitrant cultivars, CR1821, CR1113 also had an improving regeneration in the immersion system, demonstrating its potential use for recalcitrant materials. To our knowledge, this is the first report on using an immersion system to allow regeneration of gamma-ray mutants from recalcitrant rice materials.



Sign in / Sign up

Export Citation Format

Share Document