scholarly journals Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence and Multispectral Imaging

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 661
Author(s):  
Petra Štambuk ◽  
Iva Šikuten ◽  
Darko Preiner ◽  
Ana Nimac ◽  
Boris Lazarević ◽  
...  

In the era of sustainable grapevine production, there is a growing demand to define differences between Vitis vinifera varieties in susceptibility to downy mildew. Croatia, as a country with a long tradition of grapevine cultivation, preserves a large number of native grapevine varieties. A leaf disc bioassay has been conducted on 25 of them to define their response to downy mildew, according to the International Organisation of Vine and Wine (OIV) descriptor 452-1, together with the stress response of the leaf discs using chlorophyll fluorescence and multispectral imaging with 11 parameters included. Time points of measurement were as follows: before treatment (T0), one day post-inoculation (dpi) (T1), two dpi (T2), three dpi (T3), four dpi (T4), six dpi (T5), and eight dpi (T6). Visible changes in form of developed Plasmopara viticola (P. viticola) sporulation were evaluated on the seventh day upon inoculation. Results show that methods applied here distinguish varieties of different responses to downy mildew. Based on the results obtained, a phenotyping model in the absence of the pathogen is proposed, which is required to confirm by conducting more extensive research.

HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 656-660 ◽  
Author(s):  
Atsushi Kono ◽  
Akihiko Sato ◽  
Bruce Reisch ◽  
Lance Cadle-Davidson

Grapevine downy mildew (DM), caused by the oomycete Plasmopara viticola (Berk. & Curt.) Berlese & de Toni, is a major disease, especially in humid viticultural areas. Development of resistant cultivars is an important objective for grapevine breeding. To establish a reliable and inexpensive quantitative method to aid in breeding for DM resistance, we improved the method for counting the number of sporangia on leaf discs, and developed a method for counting the number of sporangia in solution. To prevent the loss of DM sporangia from adhesion onto plastic ware, we found as little as 0.01% Tween 20 was effective. On the other hand, this detergent was shown to have a severe inhibitory effect upon DM infection of leaves. We developed a sporangia counting method using dried droplets of DM suspensions, and the method was highly correlated with counting by hemacytometer (R2 > 0.96). The nonparametric Spearman’s rank correlations between visual rating and the number of the sporangia were as high as ρ = 0.82 to 0.91, suggesting that evaluation by the visual rating could provide a good estimate of the sporangia numbers on leaf discs. We established a high-throughput and inexpensive method with acceptable accuracy for DM resistance evaluation based on a leaf disc assay, and our results suggested that visual ratings of infected leaf discs provide a good estimate of sporangia numbers.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 276-276 ◽  
Author(s):  
N. A. Ward Gauthier ◽  
B. Amsden

Fungicides in the quinone outside inhibitor class (QoI, also referred to as strobilurins, FRAC group 11) are relied upon for management of a wide range of diseases, including anthracnose, black rot, downy mildew, and powdery mildew on grape. In June 2012, a grape grower from Anderson County in central Kentucky reported a planting of grapevines (Vitis vinifera cv. Vidal Blanc) with 90% downy mildew (Plasmopara viticola) incidence that would not respond to applications of the QoI fungicide Abound 2.08F (22.9% azoxystrobin, Syngenta Crop) or the QoI-containing fungicide Pristine (12.8% pyraclostrobin + 25.2% boscalid, BASF Corporation). Symptoms included yellow irregular lesions or brownish red angular lesions with necrosis on upper sides of leaves. Undersides of leaves contained dense white sporulation. The grower confirmed usage of 4 to 5 applications each of Abound and Pristine fungicides between 2011 and 2012, which exceeded the maximum number of applications allowed per season, as expressed on individual labels. Samples were collected from throughout the 0.4-ha vineyard, and the pathogen was identified as Plasmopara viticola based on morphology of sporangia and sporangiophores (2). Fungicide sensitivity was determined using methods published by Wong and Wilcox (3). Leaves were selected from the 3rd to 6th leaf position from disease-free plants. Nine-millimeter leaf discs were surface disinfested and treated with fungicide concentrations ranging from one-half of the lowest labeled rate to twice the highest label rate (850, 170, 270, and 540 mg/l azoxystrobin and 40, 80, 120, and 240 mg/l pyraclostrobin). Leaf discs were inoculated by placing 10-μl droplets of sporangial suspensions (1 × 104 sporangia per ml) and then incubated at room temperature (22 to 24°C) under fluorescent lights with a 12-h photoperiod (1,3). Dense white fungal growth developed within 10 days; discs treated with water did not develop signs of disease. Fungicide sensitivity was evaluated by determination of the effective concentration (EC50) (3). Leaf discs were examined under a dissecting microscope after 14 days to determine presence of fungal growth; those with visible sporangia and/or sporangiophores were considered diseased. Resulting EC50 concentrations were 420 and 390 mg a.i./l for Abound (azoxystrobin) and Pristine (pyraclostrobin), respectively. This was higher than EC50 ranges of resistant isolates reported by Baudoin et al. (100 and 25 mg/l for azoxystrobin and pyraclostrobin, respectively) (1). Additionally, ranges were higher than EC50 values of isolates not exposed to QoI fungicides reported by Baudoin et al. (1) and higher (14× and 39×, respectively) than those previously determined from P. viticola from Kentucky that were not exposed to QoI fungicides (Ward, unpublished). These EC50 ranges were also much higher than recommended label application rates, which ranged from 170 to 270 mg a.i./l for Abound and from 80 to 120 mg a.i./l for Pristine. Results indicated that P. viticola from this vineyard became insensitive to the fungicides Abound and Pristine. This will lead to future fungicide failures and increased incidences of downy mildew in vineyards. Although QoI-resistant P. viticola has been reported in Europe and elsewhere in the United States, this is the first documented report of QoI-resistant P. viticola in Kentucky. A complete survey is necessary to determine whether this phenomenon is widespread within the state. References: (1) A. Baudoin et al. Plant Health Progress doi:10.1094/PHP-2008-0211-02-RS, 2008. (2) R. C. Pearson and A. C. Goheen, eds. Compendium of Grape Diseases, 4th ed. The American Phytopathological Society, St. Paul, MN, 1998. (3) F. P. Wong and W. F. Wilcox. Plant Dis. 84: 275, 2000.


2017 ◽  
Vol 151 ◽  
pp. 264-274 ◽  
Author(s):  
Maria Carolina Andrade Nascimento-Gavioli ◽  
Sarah Zanon Agapito-Tenfen ◽  
Rubens Onofre Nodari ◽  
Leocir José Welter ◽  
Fernando David Sanchez Mora ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2765
Author(s):  
Christian Kraus ◽  
Rada Abou-Ammar ◽  
Andreas Schubert ◽  
Michael Fischer

In organic viticulture, copper-based fungicides are commonly used to suppress Downy Mildew infection, caused by the oomycete Plasmopara viticola. However, the frequent and intensive use of such fungicides leads to accumulation of the heavy metal in soil and nearby waters with adverse effects on the ecosystem. Therefore, alternative, organic fungicides against Downy Mildew are urgently needed to reduce the copper load in vineyards. In this study, the use of Warburgia ugandensis Sprague (Family Canellacea) leaf and bark extracts as potential fungicides against Downy Mildew were evaluated. In vitro (microtiter) and in vivo (leaf discs, seedlings) tests were conducted, as well as field trials to determine the efficacy of the extracts against Downy Mildew. The results revealed an MIC100 of 500 µg/mL for the leaf extract and 5 µg/mL for the bark extract. Furthermore, experiments with leaf discs and seedlings demonstrated a strong protective effect of the extracts for up to 48 h under (semi-) controlled conditions. However, in field trials the efficacy of the extracts distinctly declined, regardless of the extracts’ origin and concentration.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1498
Author(s):  
Rita B. Santos ◽  
Rui Nascimento ◽  
Ana V. Coelho ◽  
Andreia Figueiredo

Grapevine is one of the most relevant crops in the world being used for economically important products such as wine. However, relevant grapevine cultivars are heavily affected by diseases such as the downy mildew disease caused by Plasmopara viticola. Improvements on grapevine resistance are made mainly by breeding techniques where resistance traits are introgressed into cultivars with desired grape characteristics. However, there is still a lack of knowledge on how resistant or tolerant cultivars tackle the P. viticola pathogen. In this study, using a shotgun proteomics LC-MS/MS approach, we unravel the protein modulation of a highly tolerant grapevine cultivar, Vitis vinifera “Regent”, in the first hours post inoculation (hpi) with P. viticola. At 6 hpi, proteins related to defense and to response to stimuli are negatively modulated while at 12 hpi there is an accumulation of proteins belonging to both categories. The co-occurrence of indicators of effector-triggered susceptibility (ETS) and effector-triggered immunity (ETI) is detected at both time-points, showing that these defense processes present high plasticity. The results obtained in this study unravel the tolerant grapevine defense strategy towards P. viticola and may provide valuable insights on resistance associated candidates and mechanisms, which may play an important role in the definition of new strategies for breeding approaches.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 741-744 ◽  
Author(s):  
S. Boso ◽  
J. L. Santiago ◽  
M. C. Martínez

Resistance to downy mildew (Plasmopara viticola) was studied in eight clones of the grape (Vitis vinifera) cultivar Albariño (confirmed as such by DNA and ampelographic analysis) growing at the Misión Biológica de Galicia, Spain. Resistance to downy mildew was quantified using an image processor. Some clones (CSIC-10 and CSIC-11) were more resistant than others to leaf infection by P. viticola. However, the susceptibility of grape clusters did not differ significantly among the clones.


2020 ◽  
Vol 21 (4) ◽  
pp. 256-261
Author(s):  
Sarah E. Campbell ◽  
Phillip M. Brannen ◽  
Harald Scherm ◽  
Marin T. Brewer

Grapevine downy mildew, caused by Plasmopara viticola, is among the most damaging diseases of grapes globally and in the viticultural regions of Georgia (U.S.A.). Although management of this disease typically involves fungicide applications, resistance development in P. viticola can render chemical management ineffective. The objective of this study was to survey fungicide sensitivities of P. viticola populations in vineyards across three regions in Georgia. Samples were collected from eight vineyards in 2017 and four in 2018 and tested phenotypically for sensitivity to quinone outside inhibitor (QoI), carboxylic acid amide (CAA), and phenylamide (PA) fungicides using leaf disc bioassays. In addition, DNA was extracted from P. viticola samples collected from 2015 through 2018 in these 12 vineyards and six others for a total of 18 vineyards sampled. All available DNA samples were tested for the presence of the known resistance-causing mutations G143A (QoI) and G1105S (CAA) using polymerase chain reaction (PCR). This study documented widespread occurrence of QoI resistance in P. viticola in Georgia, with 83.0% of isolates collected in 2017 and 2018 testing positive for QoI resistance based on bioassay and 82.9% of isolates collected from 2015 to 2018 testing positive for QoI resistance through PCR testing. In total, 94.4% (17/18) of surveyed vineyards had confirmed QoI resistance by the conclusion of the survey period. No reduced sensitivity to CAA or PA fungicides was identified. Due to widespread QoI resistance, these fungicides should not be relied upon for downy mildew management in Georgia vineyards with a long history of their use.


2018 ◽  
Vol 53 (5) ◽  
pp. 602-610 ◽  
Author(s):  
Luciano Saifert ◽  
Fernando David Sánchez-Mora ◽  
Wilson Taybar Assumpção ◽  
Jean Alberto Zanghelini ◽  
Renan Giacometti ◽  
...  

Abstract: The objective of this work was to use a marker-assisted selection for pyramiding the resistance loci Rpv1 and Rpv3.1 in grapevine (Vitis vinifera), and to evaluate their conferred resistance against Brazilian downy mildew (Plasmopara viticola) isolates. A progeny of 23 plants, segregating for the two resistance loci, was obtained by the cross between the Gf 2000-305-122 and Gf.Ga-52-42 genotypes. The progeny was genotyped with four microsatellite markers and phenotyped for resistance to P. viticola using a bioassay with leaf discs. Six plants containing the Rpv1 and Rpv3.1 pyramided loci were identified by the molecular analysis. Plants harboring the Rpv1 + Rpv3.1, Rpv3.1, and Rpv1 loci showed 12.8, 30.0, and 33.1 sporangiophores per leaf disc, respectively. Plants with no resistance loci showed a dense sporulation. The phenotypic analysis of the expression of the two pyramided loci was only confirmed for four plants that showed the highest resistance level, i.e., mean value of 1.8 sporangiophores. A high-throughput method for pyramiding the Rpv1 and Rpv3.1 loci was developed, which confirmed the increased resistance to P. viticola. The selected elite genetic material shows a high resistance to downy mildew and elevated enological potential for grapevine breeding in Brazil.


Plant Disease ◽  
2007 ◽  
Vol 91 (10) ◽  
pp. 1260-1264 ◽  
Author(s):  
Megan M. Kennelly ◽  
David M. Gadoury ◽  
Wayne F. Wilcox ◽  
Robert C. Seem

Metalaxyl is translocated from roots to leaves to control a number of oomycete pathogens, but systemic movement from vegetative organs into fruit and vapor activity against Plasmopara viticola, the causal agent of grapevine downy mildew, has not been examined experimentally. We inoculated fruit clusters of grapevines with P. viticola at prebloom, bloom, or 1 week postbloom. We then selectively applied mefenoxam (288 mg/liter), the active enantiomer of metalaxyl, to the leaves or stem tissue 12 to 48 h after inoculation. Little to no downy mildew developed on fruit when mefenoxam was applied to leaf tissue, stem tissue, or both. In contrast, downy mildew symptoms were severe on inoculated clusters on untreated shoots. When potential vapor activity was blocked, we observed fungicidal activity on seedling foliage in response to apparent systemic movement from treated stems and soil, but not from leaves. However, when vapor activity was permitted, mefenoxam residues on treated leaves controlled disease on other, untreated leaves. In subsequent vineyard experiments, vapor and systemic activity provided equivalent and near-complete suppression of downy mildew on clusters 48 h post inoculation. Furthermore, inoculated grape seedlings that were placed near mefenoxam-treated seedlings in open and closed systems developed nil to trace levels of downy mildew compared with controls, further indicating that the material has strong vapor activity.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 642-642 ◽  
Author(s):  
M. Salati ◽  
M. Y. Wong ◽  
M. Sariah ◽  
H. Nik Masdek

In December 2008, infected leaves of Trichosanthes cucumerina were observed on commercial cucurbit farms located in Pontian, Johor (south of West Malaysia). Bright yellow and small necrotic lesions were observed on the adaxial surface of the leaves, whereas sporangiophores were observed on pale yellowish brown-to-brown lesions on the abaxial surface. The length and width of the sporangia ranged from 19 to 36 μm (28.6) and 11 to 23 μm (17.6), respectively. The length of the sporangiophores ranged from 310 to 450 μm, with an average length of 380 μm. The pathogen was identified as Pseudoperonospora cubensis on the basis of the morphological criteria described by Palti and Cohen (2). To confirm the morphological findings, DNA was extracted from symptomatic tissue and the internal transcribed spacer (ITS) region was PCR amplified using primers ITS5-P2 and ITS4 (3). The appropriate-sized amplicon was gel excised and column purified and then submitted for direct sequencing. The resulting 802 bp amplified ITS region was 100% identical to published P. cubensis sequences (GenBank Accession Nos. EU876603, EU876584, and AY198306). This sequence was deposited with NCBI GenBank under the Accession No. GU233293. In this study, pathogenicity tests were conducted using detached leaf disc assays (1) and a P. cubensis isolate obtained from T. cucumerina. For this purpose, leaf discs were excised from 6- to 8-week-old leaves of T. cucumerina using a 20-mm cork borer. Five leaf discs were placed with their abaxial surface facing upward on moist filter paper in petri dishes. Each of four leaf discs was inoculated with four 10-μl droplets of a 1 × 105 per ml sporangial suspension, whereas the fifth disc was inoculated with water droplets and served as a control. Three replications were completed. The leaf discs were placed in darkness at 14 ± 2°C for 24 h and subsequently incubated with a 12-h photoperiod. After 10 days, sporulation was observed on the sporangia-inoculated leaf discs with similar morphological features to the initial field samples. To our knowledge, this is the first report of P. cubensis causing downy mildew of T. cucumerina in Malaysia. References: (1) A. Lebeda and M. P. Widrlechner. J. Plant Dis. Prot. 110:337, 2003. (2) J. Palti and Y. Cohen. Phytoparasitica 8:109, 1980. (3) H. Voglmayr and O. Constantinescu. Mycol. Res. 112:487, 2008.


Sign in / Sign up

Export Citation Format

Share Document