effector triggered immunity
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 82)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Md Al Mamun ◽  
Md Tabibul Islam ◽  
Bok-Rye Lee ◽  
Dong-Won Bae ◽  
Tae-Hwan Kim

To characterize cultivar variations in hormonal regulation of the transition between pattern-triggered immunity (PTI) and effector-triggered immunity or susceptibility (ETI or ETS), the responses of resistance (R-) genes, hydrogen peroxide, and proline metabolism in two Brassica napus cultivars to contrasting disease susceptibility (resistant cv. Capitol vs. susceptible cv. Mosa) were interpreted as being linked to those of endogenous hormonal levels and signaling genes based on a time course of disease symptom development. Disease symptoms caused by the Xanthomonas campestris pv. campestris (Xcc) infections were much more developed in cv. Mosa than in cv. Capitol, as shown by an earlier appearance (at 3 days postinoculation [3 DPI]) and larger V-shaped necrosis lesions (at 9–15 DPI) in cv. Mosa. The cultivar variations in the R-genes, hormone status, and proline metabolism were found in two different phases (early [0–3 DPI] and later [9–15 DPI]). In the early phase, Xcc significantly upregulated PTI-related cytoplasmic kinase (Botrytis-induced kinase-1 [BIK1]) expression (+6.3-fold) with salicylic acid (SA) accumulation in cv. Capitol, while relatively less (+2.6-fold) with highly increased jasmonic acid (JA) level in cv. Mosa. The Xcc-responsive proline accumulation in both cultivars was similar to upregulated expression of proline synthesis-related genes (P5CS2 and P5CR). During the later phase in cv. Capitol, Xcc-responsive upregulation of ZAR1 (a coiled-coil-nucleotide binding site-leucine-rich repeat [CC-NB-LRR-type R-gene]) was concomitant with a gradual increase in JA levels without additional proline accumulation. However, in cv. Mosa, upregulation of TAO1 (a toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat [TIR-NB-LRR-type R-gene]) was consistent with an increase in SA and abscisic acid (ABA) levels and resulted in an antagonistic depression of JA, which led to a proline accumulation. These results indicate that Xcc-induced BIK1- and ZAR1-mediated JA signaling interactions provide resistance and confirm ETI, whereas BIK1- and TAO1-enhanced SA- and/or ABA-mediated proline accumulation is associated with disease susceptibility (ETS).


2021 ◽  
Author(s):  
Tshegofatso Ngwaga ◽  
Deepika Chauhan ◽  
Abigail G Salberg ◽  
Stephanie R Shames

Legionella pneumophila causes Legionnaires' Disease via replication within host macrophages using an arsenal of hundreds of translocated virulence factors termed effector proteins. Effectors are critical for intracellular replication but can also enhance pathogen clearance in mammalian hosts via effector-triggered immunity. The effector LegC4 confers a fitness disadvantage on L. pneumophila within mouse models of Legionnaires' Disease and uniquely potentiates the antimicrobial activity of macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. Here, we investigated the mechanism of LegC4 function. We found that LegC4 binds proteasome activator (PA)28α, a subunit of the PA28αβ (11S) proteasome regulator, and that the LegC4 restriction phenotype is abolished within PA28αβ-deficient macrophages. PA28αβ facilitates ubiquitin-independent proteasomal degradation of oxidant-damaged proteins. Impaired proteasome activity results in compensatory upregulation of lysosomal degradation pathways to relieve oxidative proteotoxic stress. We found that LegC4 impairs the resolution of oxidative proteotoxic stress and enhances phagolysosomal fusion with the Legionella-containing vacuole. PA28αβ has been traditionally associated with antigen presentation and adaptive immunity; however, our data support a model whereby suppression of PA28αβ by LegC4 impairs resolution of oxidative proteotoxic stress, which culminates in the lysosomal killing of L. pneumophila within activated macrophages. This work provides a solid foundation on which to evaluate induced proteasome regulators as mediators of cell-autonomous immunity.


Nature ◽  
2021 ◽  
Author(s):  
Keran Zhai ◽  
Di Liang ◽  
Helin Li ◽  
Fangyuan Jiao ◽  
Bingxiao Yan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Juanjuan Yu ◽  
Juan M. Gonzalez ◽  
Zhiping Dong ◽  
Qianru Shan ◽  
Bowen Tan ◽  
...  

Plants have evolved a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI and ETI are functionally linked, but also have distinct characteristics. Unraveling how these immune systems coordinate plant responses against pathogens is crucial for understanding the regulatory mechanisms underlying plant defense. Here we report integrative proteomic and phosphoproteomic analyses of the tomato-Pseudomonas syringae (Pst) pathosystem with different Pst mutants that allow the dissection of PTI and ETI. A total of 225 proteins and 79 phosphopeptides differentially accumulated in tomato leaves during Pst infection. The abundances of many proteins and phosphoproteins changed during PTI or ETI, and some responses were triggered by both PTI and ETI. For most proteins, the ETI response was more robust than the PTI response. The patterns of protein abundance and phosphorylation changes revealed key regulators involved in Ca2+ signaling, mitogen-activated protein kinase cascades, reversible protein phosphorylation, reactive oxygen species (ROS) and redox homeostasis, transcription and protein turnover, transport and trafficking, cell wall remodeling, hormone biosynthesis and signaling, suggesting their common or specific roles in PTI and/or ETI. A NAC (NAM, ATAF, and CUC family) domain protein and lipid particle serine esterase, two PTI-specific genes identified from previous transcriptomic work, were not detected as differentially regulated at the protein level and were not induced by PTI. Based on integrative transcriptomics and proteomics data, as well as qRT-PCR analysis, several potential PTI and ETI-specific markers are proposed. These results provide insights into the regulatory mechanisms underlying PTI and ETI in the tomato-Pst pathosystem, and will promote future validation and application of the disease biomarkers in plant defense.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hernan G. Rosli ◽  
Emilia Sirvent ◽  
Florencia N. Bekier ◽  
Romina N. Ramos ◽  
Marina A. Pombo

AbstractPlants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.


2021 ◽  
Author(s):  
M. Sathyabhama ◽  
Rasappa Viswanathan ◽  
C.N. Prasanth ◽  
P. Malathi ◽  
A. Ramesh Sundar

Abstract The fungal pathogen Colletotrichum falcatum causes the stalks, the economically important for sugar extraction. Although, disease management is achieved by cultivating resistant cultivars, the complex polyploidy of sugarcane genome complicates understanding the inheritance of disease resistance. Earlier attempts of using resistant and susceptible varieties to understand host-pathogen interaction resulted in cultivar specific expression of genes due to different genomic background of the varieties. To avoid host background variation in the interaction, suppression subtractive hybridization (SSH) based next generation sequencing technology was utilized in the same cv Co 7805 which behaves differently as incompatible and compatible to two different C. falcatum pathotypes. In the incompatible interaction (ICI) with C. falcatum pathotype Cf87012 (Less virulent, LVir) 10,038 contigs were assembled from ~54,699,263 raw reads. In the compatible interaction (CI) to the C. falcatum pathotype Cf94012 (Virulent, Vir) 4022 contigs were assembled from ~52,509,239 raw reads. The transcripts homologous to CEBiP receptor and transcripts involved in the signals ROS, Ca2+, BR, JA and ABA were exhibited in both the responses. Additionally, MAPK, ET, PI signals and JA amino conjugation related transcripts were found only in ICI. Finally, the temporal gene expression of a total number of 16 transcripts was monitored in qRT-PCR. Most of the transcripts exhibited highest induction in ICI in comparison with CI. Further, more than 17 transcripts specific to the pathogen were found only in CI, indicating that the pathogen colonizes the host tissue whereas it failed to to do so in ICI. Overall, this study has identified for the first time, the differential responses of a single sugarcane host to two different C. falcatum pathotypes and PAMP triggered immunity (PTI) is exhibited in both the responses, but the more efficient effector triggered immunity (ETI) was found only in ICI at the molecular level.


2021 ◽  
Author(s):  
Alexandre Martel ◽  
Bradley Laflamme ◽  
Clare Breit-McNally ◽  
Darrell Desveaux ◽  
David S Guttman

The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC) [1], 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.


2021 ◽  
Vol 118 (47) ◽  
pp. e2116570118
Author(s):  
Derek Seto ◽  
Madiha Khan ◽  
D. Patrick Bastedo ◽  
Alexandre Martel ◽  
Trinh Vo ◽  
...  

Pathogenic effector proteins use a variety of enzymatic activities to manipulate host cellular proteins and favor the infection process. However, these perturbations can be sensed by nucleotide-binding leucine-rich-repeat (NLR) proteins to activate effector-triggered immunity (ETI). Here we have identified a small molecule (Zaractin) that mimics the immune eliciting activity of the Pseudomonas syringae type III secreted effector (T3SE) HopF1r and show that both HopF1r and Zaractin activate the same NLR-mediated immune pathway in Arabidopsis. Our results demonstrate that the ETI-inducing action of pathogenic effectors can be harnessed to identify synthetic activators of the eukaryotic immune system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arnab Purohit ◽  
Sanatan Ghosh ◽  
Shreeparna Ganguly ◽  
Madan Singh Negi ◽  
Shashi Bhushan Tripathi ◽  
...  

AbstractVascular wilt caused by Fusarium udum Butler is the most important disease of pigeonpea throughout the world. F. udum isolate MTCC 2204 (M1) inoculated pigeonpea plants of susceptible (ICP 2376) and resistant (ICP 8863) cultivars were taken at invasion stage of pathogenesis process for transcriptomic profiling to understand defense signaling reactions that interplay at early stage of this plant–pathogen encounter. Differential transcriptomic profiles were generated through cDNA-AFLP from M1 inoculated resistant and susceptible pigeonpea root tissues. Twenty five percent of transcript derived fragments (TDFs) were found to be pathogen induced. Among them 73 TDFs were re-amplified and sequenced. Homology search of the TDFs in available databases and thorough study of scientific literature identified several pathways, which could play crucial role in defense responses of the F. udum inoculated resistant plants. Some of the defense responsive pathways identified to be active during this interaction are, jasmonic acid and salicylic acid mediated defense responses, cell wall remodeling, vascular development and pattering, abscisic acid mediated responses, effector triggered immunity, and reactive oxygen species mediated signaling. This study identified important wilt responsive regulatory pathways in pigeonpea which will be helpful for further exploration of these resistant components for pigeonpea improvement.


Sign in / Sign up

Export Citation Format

Share Document