scholarly journals Molecular Phylogeny of Trifolium L. Section Trifolium with Reference to Chromosome Number and Subsections Delimitation

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1985
Author(s):  
Hanan I. Sayed Ahmed ◽  
Abdelfattah Badr ◽  
Hanaa H. El-Shazly ◽  
Linda Watson ◽  
Ahmed S. Fuoad ◽  
...  

The genus Trifolium is one of the largest genera of the legume family Fabaceae with ca. 255 species. The genus is divided into eight sections; the section Trifolium is a major section of the genus, comprising 73 species mainly distributed in the Mediterranean region. We used nuclear ribosomal DNA internal transcribed spacer (ITS) and morphological variation to reconsider the delimitation and phylogenetic relationships of species in the section Trifolium with reference to chromosomal variations. Bayesian analysis of ITS data delimited the species as three clades based on the analysis of ITS sequence and informative indels in combination with morphological variation. The phylogeny of the species by different analyses methods does not support their current delimitation in 17 subsections. The basic chromosome number x = 8 is the number for the genus Trifolium, from which x = 7, 6 and 5 were derived through successive aneuploidy events. With reference to the distribution of these numbers in the species of the section Trifolium, species in clade III and clade II are more evolved than species in clade I.

Mycotaxon ◽  
2020 ◽  
Vol 135 (1) ◽  
pp. 183-193
Author(s):  
Sana Jabeen ◽  
Abdul Nasir Khalid

Pseudosperma flavorimosum is a new species described from Khyber Pakhtunkhwa province, Pakistan. It is delimited based on morphological characters combined with a molecular phylogeny inferred from nuclear ribosomal DNA internal transcribed spacer (ITS) sequence analyses. The ITS-based phylogeny supports the independence of the new species, which is also is morphologically distinct from closely related taxa.


1963 ◽  
Vol 41 (5) ◽  
pp. 719-742 ◽  
Author(s):  
Shoichi Kawano

The chromosome number, karyotype, and morphological variation of plants of the Deschampsia caespitosa complex are reported in this paper. It is shown that the chromosome number of 2n = 26 is most common in typical D. caespitosa (L.) Beauv. But, remembering the basic chromosome number in the Agrostideae, the original basic number of the genus Deschampsia is considered to be x = 7. Thus, a reduction of the chromosome number from 28 to 26 is speculated in this particular group of Deschampsia. The plant from Mt. Albert, Canada, referable to D. caespitosa ssp. littoralis (Reut.) Rchb., has a high chromosome number of 2n = 49. Considering the morphological affinity between D. caespitosa ssp. littoralis and D. alpina Roem. & Schult., as well as their geographical distribution, parallel development of the plants with such high irregular chromosome number is assumed.The karyotype of D. caespitosa s. str. was also investigated. This species has a highly specialized asymmetrical karyotype, viz., K(2n) = 26 = 4 V + 10 J + 12 I.On the basis of cytology, morphology, ecology, and geographical distribution, the phylogenetic relationships within this complex were considered. The littoralis type, having well-developed panicles, large spikelets, three (rarely four) florets, and a preference for wet terrestrial sites, is speculated to be the most basic form in the D. caespitosa complex, even though the type with smaller spikelets, i.e., caespitosa s. str. is at the present time much more abundant. Various other population groups such as D. caespitosa v. parviflora (Thuill.) Coss. & Germ., D. brevifolia R. Br., D. alpina Roem. & Schult., and the species of the bottnica group (including D. beringensis Hultén, D. bottnica (Wahlenb.) Trin., D. congestiformis Booth, D. holciformis F. & C. Presl, D. mackenzieana Raup, D. macrothyrsa Tatewaki et Ohwi, D. obensis Roshev., and D. wibeliana Schur.) are presumed to be more specialized.


Author(s):  
Aakriti Bhandari ◽  
Harminder Singh ◽  
Amber Srivastava ◽  
Puneet Kumar ◽  
G. S. Panwar ◽  
...  

Abstract Background Sophora mollis Royle (family Fabaceae, subfamily-Papilionaceae) is a multipurpose legume distributed in plains and foothills of the North-West Himalaya to Nepal and is facing high risk of extinction due to habitat loss and exploitation by the local people for its fuel and fodder values. Therefore, the present study was conducted to standardize a micropropagation protocol for Sophora mollis by using shoot tip explants and to study the meiotic chromosome count in the species. Results Multiple shoots were induced in shoot tip explants of Sophora mollis in Murashige and Skoog medium supplemented with different concentrations of cytokinins alone (BAP, TDZ, and Kinetin) and in combination with varying concentrations of NAA. MS medium supplemented with BAP (8.9 μM) was observed to be the optimal medium for multiple shoot induction and maximum 25.32 shoots per explant was obtained with average length of 4.5 ± 0.8 cm. In vitro developed shoots were transferred onto rooting media supplemented with different concentrations of auxin (IAA, IBA, and NAA). Maximum 86% rooting was observed in half-strength MS medium supplemented with 21.20 μM NAA with an average of 21.26 roots per culture. In vitro raised plantlets were adapted to greenhouse for better acclimatization and 60% plants were successfully transferred to the open environment. Based on the chromosome counts available from the literature and the current study, the species tend to show a basic chromosome number of x = 9. Conclusion The micropropagation protocol standardized can be helpful for the ex situ mass multiplication and germplasm conservation of the endangered species. Moreover, the ex situ conservation approach will be helpful in actively bridging the gap between ex situ and in situ approaches through the reintroduction of species in the wild. The cytological studies revealed the basic chromosome number x = 9 of the species.


2002 ◽  
Vol 15 (1) ◽  
pp. 49 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Gay E. McKinnon ◽  
René E. Vaillancourt ◽  
Brad M. Potts

This expanded survey of ITS sequences represents the largest analysis of molecular data ever attempted on Eucalyptus. Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were included in an analysis of 90 species of Eucalyptus s.s. and 28 species representing eight other genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, Eucalyptopsis, Stockwellia, Lophostemon and Metrosideros). The results of the study indicate that Angophora and Corymbia form a well-supported clade that is highly differentiated from Eucalyptus s.s. Corymbia species are divided between two clades, one of which may be the sister to Angophora. Allosyncarpia, Arillastrum, Eucalyptopsis and ‘Stockwellia’ are also highly differentiated from Eucalyptus s.s. If the genus Eucalyptus is to be expanded to include Angophora and Corymbia(sensu Brooker 2000), ITS data suggest that Allosyncarpia, Eucalyptopsis, ‘Stockwellia’ and potentially Arillastrum should also be included in Eucalyptus s.l. The ITS data suggest that subg. Symphyomyrtus is paraphyletic and that subg. Minutifructus should be included within it. Within subg.Symphyomyrtus, only sect. Maidenaria appears to be monophyletic. Sections Adnataria and Dumaria are probably monophyletic; sections Exsertaria and Latoangulatae are very close and probably should be combined in a single section. Section Bisectae is polyphyletic and is divided into two distinct lineages. The phylogenetic groups depicted by ITS data are consistent with the frequency of natural inter-specific hybridisations as well as data from controlled crosses within subgenus Symphyomyrtus. The ITS data illustrate that subg. Idiogenes and western Australian monocalypts are early evolutionary lines relative to E. diversifolia, E. rubiginosa (monotypic subg. Primitiva) and the eastern monocalypts and that subg. Primitiva should be sunk into subg. Eucalyptus. Subgenus Eudesmia may be monophyletic, grouping with subgenera Idiogenes and Eucalyptus. Further work is required to confirm the phylogenetic positions of the monotypic subgenera Alveolata, Cruciformes, Acerosae and Cuboidea.


1983 ◽  
Vol 8 ◽  
pp. 101-126 ◽  
Author(s):  
G. Vida ◽  
A. Major ◽  
T. Reichstein

Nine species of "Cheilantoid ferns" are known to grow in Macaronesia and the Mediterranean basin. Two of them (lacking a pseudo-indusium and having the basic chromosome number X = 29), both aggregate species which we prefer to retain in Notholaena, are not included in this study. The other seven species (with distinct pseudo-indusium and the basic chromosome number X = 30), which we accept as members of the genus Cheilanthes Sw. sensu stricto, were subjected to detailed genome analysis of their natural and experimentally produced hybrids and shown to represent an aggregate of four very distinct ancestral diploids and three allotetraploids. The latter must have once been formed by chromosome doubling in the three diploid hybrids of C. maderensis Lowe with the other three diploid species. Theoretically three more allotetraploids would be possible but their formation has obviously been prevented by the geographical separation of the three respective diploids. The most widely distributed of the tetraploids, i.e. C. pteridioides (Reich.) C.Chr. has also been resynthesized from its ancestors (still sympatric) under experimental conditions. The intermediate morphology of the allotetraploids (as compared with their diploid ancestors) is obviously the reason why their status and existence has so long escaped recognition in Europe. These seven species form a natural group and, in our opinion, should not be divided into sections.


Bothalia ◽  
1998 ◽  
Vol 28 (1) ◽  
pp. 83-90 ◽  
Author(s):  
N. C. Visser ◽  
J. J. Spies

A basic chromosome number of x = 9 has been confirmed for Cenchrus ciliaris L. Polyploidy is common and levels vary from tetraploid to hexaploid. Aneuploidv is reported for a single specimen, where two chromosomes of a single genome were lost. Various meiotic irregularities were observed. The highest incidence of meiotic abnormalities was observed in the pentaploid specimens. This was attributed to their uneven polyploid level All specimens varied from segmental alloploid to alloploid.


Bothalia ◽  
1989 ◽  
Vol 19 (1) ◽  
pp. 125-132 ◽  
Author(s):  
J. J. Spies ◽  
E. J. L. Saayman ◽  
S. P. Voges ◽  
G. Davidse

Cytogenetic studies of 53 specimens of 14 species of the genus  Ehrharta Thunb. confirmed a basic chromosome number of 12 for the genus. Chromosome numbers for 13 species are described for the first time. The highest ploidy level yet observed in the genus (2n = lOx = 120) is reported for E. villosa var.  villosa. B chromosomes were observed in several specimens of four different species.


Bothalia ◽  
1994 ◽  
Vol 24 (2) ◽  
pp. 241-246 ◽  
Author(s):  
J. J. Spies ◽  
T. H. Troskie ◽  
E. Van der Vyver ◽  
S. M. C Van Wyk

Representative specimens of various species of the genera  Andropogon L.,  Cymbopogon Spreng.,  Elionurus Kunth ex Willd.,  Hyparrhenia Foum. and  Hyperthelia Clayton were cytogenetically studied. All specimens had a secondary basic chromosome number of ten. Polyploidy, either as alloploidy or segmental alloploidy. was frequent. The taxa studied represent mature polyploid complexes.  


Sign in / Sign up

Export Citation Format

Share Document