scholarly journals At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2654
Author(s):  
Maria Lebedeva ◽  
Mahboobeh Azarakhsh ◽  
Darina Sadikova ◽  
Lyudmila Lutova

The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary “new” organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.

2019 ◽  
Vol 70 (17) ◽  
pp. 4505-4520 ◽  
Author(s):  
Antoine Berger ◽  
Alexandre Boscari ◽  
Pierre Frendo ◽  
Renaud Brouquisse

AbstractInteractions between legumes and rhizobia lead to the establishment of a symbiotic relationship characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Significant amounts of nitric oxide (NO) accumulate at different stages of nodule development, suggesting that NO performs specific signaling and/or metabolic functions during symbiosis. NO, which regulates nodule gene expression, accumulates to high levels in hypoxic nodules. NO accumulation is considered to assist energy metabolism within the hypoxic environment of the nodule via a phytoglobin–NO-mediated respiration process. NO is a potent inhibitor of the activity of nitrogenase and other plant and bacterial enzymes, acting as a developmental signal in the induction of nodule senescence. Hence, key questions concern the relative importance of the signaling and metabolic functions of NO versus its toxic action and how NO levels are regulated to be compatible with nitrogen fixation functions. This review analyses these paradoxical roles of NO at various stages of symbiosis, and highlights the role of plant phytoglobins and bacterial hemoproteins in the control of NO accumulation.


2020 ◽  
Author(s):  
Huchen Li ◽  
Stefan Schilderink ◽  
Qingqin Cao ◽  
Olga Kulikova ◽  
Ton Bisseling

ABSTRACTLegume and rhizobium can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodelling factors, like transcription factors, are key players in regulating gene expression. However, it has not been studied whether chromatin remodelling genes that are essential for root development get involved in nodule development. Here we studied the role of Medicago histone deacetylases (MtHDTs) in nodule development. Their Arabidopsis orthologs have been shown to play a role in root development. The expression of MtHDTs is induced in nodule primordia and is maintained in nodule meristem and infection zone. Conditional knock-down of their expression in a nodule-specific way by RNAi blocks nodule primordium development. A few nodules still can be formed but their nodule meristems are smaller and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of these organs in a different manner. During nodule development the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). The decreased expression of MtHMGR1 is sufficient to explain the block of primordium formation.ONE SENTENCE SUMMARYPlant-specific histone deacetylases regulate the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductases to control root nodule development.


2016 ◽  
Vol 51 (5) ◽  
pp. 585-592
Author(s):  
E.A. Dolgikh ◽  
◽  
A.N. Kirienko ◽  
I.V. Leppyanen ◽  
A.V. Dolgikh ◽  
...  

2019 ◽  
Author(s):  
◽  
Nhung Thi Huyen Hoang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Nitrogen is a macronutrient that is critical for plant growth and development because it provides the building blocks of nucleic acids, proteins, chlorophyll, and energy- transfer compounds, such as ATP. Although 78% of the atmosphere is diatomic nitrogen, this form is inert and unavailable to plants due to the strong nitrogen-nitrogen triple bond. Plants can only absorb nitrogen in the forms of NH4+ or NO3-. Most of the inorganic nitrogen available to crop plants is provided through fertilizers synthesized based on the Haber-Bosch process. This process converts atmospheric nitrogen (N2) into ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst (iron) under high temperatures (~500 [degrees]C) and high pressures (150-300 bar). Ammonia production by this method consumes a lot of energy, which is derived from burning fossil fuels. Synthetic ammonia production by the Haber-Bosch process causes losses of biodiversity through eutrophication, soil acidification and global increase in N2O atmospheric concentration, which is the third most significant greenhouse gas. An alternative approach to provide a sustainable nitrogen source to plants without causing such damage to the environment is through biological nitrogen fixation between legume species and Rhizobium bacteria. The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, specialized organs within which rhizobia convert atmospheric nitrogen into ammonia for plant consumption. In return, the legume host plants provide rhizobia with photosynthate as a carbon source for their growth. The legume - Rhizobium symbiosis is a sophisticated process that requires numerous regulators including the 20-24 nucleotide-long microRNAs which negatively regulate the expression of their target messenger RNAs. In my study, we provide two examples that demonstrate the significant role of microRNAs in the symbiotic interplay between soybean, an important legume crop, and rhizobia. In the first example, our results suggest that gma-miR319i functions as a positive regulator of nodule number during the soybean - Bradyrhizobium symbiosis by targeting the TCP33 transcription factor. Overexpression and CRISPR/cas9-mediated gene mutation of gma-miR319i increased and reduced nodule number after rhizobial inoculation, respectively. gma-miR319i and TCP33 showed an inverse expression pattern in different stages of nodule development. TCP33 modulated nodule development in a gma-miR319i dependent manner. The expression of gma-miR319i and TCP33 was differentially regulated in one soybean mutant line that exhibits a hypernodulation phenotype. In the second example, we further investigated the mechanism by which two identical microRNAs, gma-miR171o and gma-miR171q, function in modulating the spatial and temporal aspects of soybean nodulation. Although sharing the identical mature sequence, gma-miR171o and gma-miR171q genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Besides those two above-mentioned examples, we were able to generate and characterize an enhancer trap insertional mutant of the NODULATION SIGNALING PATHWAY 2 (NSP2) gene which is the target gene of Gma-miR171 and also an important regulator of nodulation. Overall, our study shows the importance of microRNAs in the regulation of nitrogen-fixing symbiosis. Our results contribute to efforts to fully understand the molecular mechanisms controlling the legume - Rhizobium interaction. Our ultimate hope is that the information gained through my studies can lead to an increased utilization of biological nitrogen fixation for sustainable agriculture and environment protection.


2016 ◽  
Vol 51 (3) ◽  
pp. 285-298
Author(s):  
E.A. Dolgikh ◽  
◽  
A.N. Kirienko ◽  
I.V. Leppyanen ◽  
A.V. Dolgikh ◽  
...  

Author(s):  
Alexandru Tomescu ◽  
Gar Rothwell

Fossils constitute the principal repository of data that allow for independent tests of hypotheses of biological evolution derived from observations of the extant biota. Traditionally, transformational series of structure, consisting of sequences of fossils of the same lineage through time, have been employed to reconstruct and interpret morphological evolution. More recently, a move toward an updated paradigm was fueled by the deliberate integration of developmental thinking in the inclusion of fossils in reconstruction of morphological evolution. The vehicle for this is provided by structural fingerprints – recognizable morphological and anatomical structures generated by (and reflective of) the deployment of specific genes and regulatory pathways during development. Furthermore, because the regulation of plant development is both modular and hierarchical in nature, combining structural fingerprints recognized in the fossil record with our understanding of the developmental regulation of those structures produces a powerful tool for understanding plant evolution. This is particularly true when the systematic distribution of specific developmental regulatory mechanisms and modules is viewed within an evolutionary (paleo-evo-devo) framework. Here, we discuss several advances in understanding the processes and patterns of evolution, achieved by tracking structural fingerprints with their underlying regulatory modules across lineages, living and fossil: the role of polar auxin regulation in the cellular patterning of secondary xylem and the parallel evolution of arborescence in lycophytes and seed plants; the morphology and life history of early polysporangiophytes and tracheophytes; the role of modularity in the parallel evolution of leaves in euphyllophytes; leaf meristematic activity and the parallel evolution of venation patterns among euphyllophytes; mosaic deployment of regulatory modules and the diverse modes of secondary growth of euphyllophytes; modularity and hierarchy in developmental regulation and the evolution of equisetophyte reproductive morphology. More generally, inclusion of plant fossils in the evo-devo paradigm has informed discussions on the evolution of growth patterns and growth responses, sporophyte body plans and their homology, sequences of character evolution, and the evolution of reproductive systems.


Author(s):  
Caili Li ◽  
Meizhen Wang ◽  
Xiaoxiao Qiu ◽  
Hong Zhou ◽  
Shanfa Lu

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. Results and Conclusion: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.


Sign in / Sign up

Export Citation Format

Share Document