scholarly journals Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 83 ◽  
Author(s):  
Mohamed Ahres ◽  
Krisztián Gierczik ◽  
Ákos Boldizsár ◽  
Pavel Vítámvás ◽  
Gábor Galiba

It is established that, besides the cold, incident light also has a crucial role in the cold acclimation process. To elucidate the interaction between these two external hardening factors, barley plantlets were grown under different light conditions with low, normal, and high light intensities at 5 and 15 °C. The expression of the HvCBF14 gene and two well-characterized members of the C-repeat binding factor (CBF)-regulon HvCOR14b and HvDHN5 were studied. In general, the expression level of the studied genes was several fold higher at 5 °C than that at 15 °C independently of the applied light intensity or the spectra. The complementary far-red (FR) illumination induced the expression of HvCBF14 and also its target gene HvCOR14b at both temperatures. However, this supplementation did not affect significantly the expression of HvDHN5. To test the physiological effects of these changes in environmental conditions, freezing tests were also performed. In all the cases, we found that the reduced R:FR ratio increased the frost tolerance of barley at every incident light intensity. These results show that the combined effects of cold, light intensity, and the modification of the R:FR light ratio can greatly influence the gene expression pattern of the plants, which can result in increased plant frost tolerance.

1987 ◽  
Vol 44 (12) ◽  
pp. 2118-2132 ◽  
Author(s):  
Russell L. Cuhel ◽  
David R. S. Lean

The biochemical composition of newly produced phytoplankton biomass in Lake Ontario varied systematically with respect to experimentally manipulated incident light intensity and environmentally imposed water temperature and daylength, but was insensitive to light quality. Total uptake of 14C-labeled bicarbonate was light dependent (Popt:dark = 60–200), while 35SO42− uptake was light stimulated (Popt:dark < 5). Subcellular allocation of 14C for relative protein, carbohydrate, and lipid polymer synthesis responded sensitively to subsaturating light. Pathways of 35S assimilation were unaffected by light intensity. Night protein synthesis and attendant respiration of polymeric carbohydrates was a function of prior light history: with daytime illumination at Popt, day and night rates of 35SO4-S incorporation into protein were often indistinguishable. Using April–November data from Popt only, allocation of carbon to carbohydrate polymer storage for night growth was strictly proportional to nightlength. The proportion of carbon contained in protein was strongly correlated with in situ water temperature. The lack of cross-correlation suggests that temperature and daylength exert independent constraints on the biochemical composition of lake microplankton.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuying Yang ◽  
Zhiyan Chen ◽  
Xiangqian Lu ◽  
Xiaotao Hao ◽  
Wei Qin

AbstractThe organic magnetoelectric complexes are beneficial for the development on flexible magnetoelectric devices in the future. In this work, we fabricated all organic multiferroic ferromagnetic/ferroelectric complexes to study magnetoelectric coupling at room temperature. Under the stimulus of external magnetic field, the localization of charge inside organic ferromagnets will be enhanced to affect spin–dipole interaction at organic multiferroic interfaces, where overall ferroelectric polarization is tuned to present an organic magnetoelectric coupling. Moreover, the magnetoelectric coupling of the organic ferromagnetic/ferroelectric complex is tightly dependent on incident light intensity. Decreasing light intensity, the dominated interfacial interaction will switch from spin–dipole to dipole–dipole interaction, which leads to the magnetoelectric coefficient changing from positive to negative in organic multiferroic magnetoelectric complexes.


2021 ◽  
Author(s):  
Xiaoluo Bao ◽  
Xiaokun Wang ◽  
Xiangqing Li ◽  
Lixia Qin ◽  
Taiyang Zhang ◽  
...  

It is necessary for the commercialization of sunlight-driven H2 evolution to develop an efficient photocatalytic system whose energy utilization is independent on incident light intensity. Unfortunately, limited attention has been...


1984 ◽  
Vol 21 (03) ◽  
pp. 464-478
Author(s):  
William J. Anderson

The response of the photographic grain to light is a non-deterministic process which is as yet not completely understood. This response, as measured by the photographic density, is usually taken to be a function of the product of incident light intensity and exposure time interval duration, but at extreme values of either of these two quantities, this is no longer true. This latter effect is called reciprocity-law failure. This paper discusses a probabilistic model, similar to a multiserver queue, for high-intensity reciprocity failure.


Sign in / Sign up

Export Citation Format

Share Document