scholarly journals Transgenesis as a Tool for the Efficient Production of Selected Secondary Metabolites from Plant in Vitro Cultures

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Wieczfinska ◽  
Ewa Skała ◽  
Tomasz Śliwiński ◽  
Przemysław Sitarek

The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.

2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Le Wang ◽  
Guangping Huang ◽  
Rong Hou ◽  
Dunwu Qi ◽  
Qi Wu ◽  
...  

Abstract Background Flavonoids are important plant secondary metabolites (PSMs) that have been widely used for their health-promoting effects. However, little is known about overall flavonoid metabolism and the interactive effects between flavonoids and the gut microbiota. The flavonoid-rich bamboo and the giant panda provide an ideal system to bridge this gap. Results Here, integrating metabolomic and metagenomic approaches, and in vitro culture experiment, we identified 97 flavonoids in bamboo and most of them have not been identified previously; the utilization of more than 70% flavonoid monomers was attributed to gut microbiota; the variation of flavonoid in bamboo leaves and shoots shaped the seasonal microbial fluctuation. The greater the flavonoid content in the diet was, the lower microbial diversity and virulence factor, but the more cellulose-degrading species. Conclusions Our study shows an unprecedented landscape of beneficial PSMs in a non-model mammal and reveals that PSMs remodel the gut microbiota conferring host adaptation to diet transition in an ecological context, providing a novel insight into host-microbe interaction.


2018 ◽  
pp. 131-186
Author(s):  
Hussien M. Daffalla ◽  
Azza Migdam Elsheikh

Metabolites ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 97 ◽  
Author(s):  
Hammad Ismail ◽  
Anna L. Gillespie ◽  
Danielle Calderwood ◽  
Haroon Iqbal ◽  
Colene Gallagher ◽  
...  

Plant secondary metabolites are protective dietary constituents and rol genes evidently increase the synthesis of these versatile phytochemicals. This study subjected a globally important vegetable, lettuce (Lactuca sativa) to a combination of untargeted metabolomics (LC-QTof-MS) and in vitro bioactivity assays. Specifically, we examined the differences between untransformed cultured lettuce (UnT), lettuce transformed with either rolABC (RA) or rolC (RC) and commercially grown (COM) lettuce. Of the 5333 metabolite features aligned, deconvoluted and quantified 3637, 1792 and 3737 significantly differed in RA, RC and COM, respectively, compared with UnT. In all cases the number of downregulated metabolites exceeded the number increased. In vitro bioactivity assays showed that RA and RC (but not COM) significantly improved the ability of L. sativa to inhibit α-glucosidase, inhibit dipeptidyl peptidase-4 (DPP-4) and stimulate GLP-1 secretion. We putatively identified 76 lettuce metabolites (sesquiterpene lactones, non-phenolic and phenolic compounds) some of which were altered by several thousand percent in RA and RC. Ferulic acid levels increased 3033–9777%, aminooxononanoic acid increased 1141–1803% and 2,3,5,4′tetrahydroxystilbene-2-O-β-d-glucoside increased 40,272–48,008%. Compound activities were confirmed using commercially obtained standards. In conclusion, rol gene transformation significantly alters the metabolome of L.sativa and enhances its antidiabetic properties. There is considerable potential to exploit rol genes to modulate secondary metabolite production for the development of novel functional foods. This investigation serves as a new paradigm whereby genetic manipulation, metabolomic analysis and bioactivity techniques can be combined to enable the discovery of novel natural bioactives and determine the functional significance of plant metabolites.


2003 ◽  
Vol 33 (5) ◽  
pp. 565-568 ◽  
Author(s):  
Izabela Staniszewska ◽  
Aleksandra Królicka ◽  
Edmund Maliński ◽  
Ewa Łojkowska ◽  
Janusz Szafranek

Author(s):  
Christoph Wawrosch ◽  
Sergey B. Zotchev

AbstractMedicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance.Key points• Bioactive plant secondary metabolites are important for current and future use in medicine• In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis• Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production Graphical abstract


Author(s):  
Tuncay Çalışkan ◽  
Rüştü Hatipoğlu ◽  
Saliha Kırıcı

Plant secondary metabolites are a group of organic compounds produced by plants to interact with biotic and abiotic factors and for the establishment of defence mechanism. Secondary metabolites are classified based on their biosynthetic origin and chemical structure. They have been used as pharmaceutical, agrochemical, flavours, fragrances, colours and food additives. Secondary metabolites are traditionally produced from the native grown or field grown plants. However, this conventional approach has some disadvantages such as low yield, instability of secondary metabolite contents of the plants due to geographical, seasonal and environmental variations, need for land and heavy labour to grow plants. Therefore, plant cell and organ cultures have emerged as an alternative to plant growing under field conditions for secondary metabolite production. In this literature review, present state of secondary metabolite production through plant cell and organ cultures, its problems as well as solutions of the problems were discussed.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Krolicka ◽  
A Szpitter ◽  
M Maci ąg ◽  
E Biskup ◽  
E Gilgenast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document