scholarly journals The Role of Plasmodesmata-Associated Receptor in Plant Development and Environmental Response

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 216 ◽  
Author(s):  
Minh Huy Vu ◽  
Arya Bagus Boedi Iswanto ◽  
Jinsu Lee ◽  
Jae-Yean Kim

Over the last decade, plasmodesmata (PD) symplasmic nano-channels were reported to be involved in various cell biology activities to prop up within plant growth and development as well as environmental stresses. Indeed, this is highly influenced by their native structure, which is lined with the plasma membrane (PM), conferring a suitable biological landscape for numerous plant receptors that correspond to signaling pathways. However, there are more than six hundred members of Arabidopsis thaliana membrane-localized receptors and over one thousand receptors in rice have been identified, many of which are likely to respond to the external stimuli. This review focuses on the class of plasmodesmal-receptor like proteins (PD-RLPs)/plasmodesmal-receptor-like kinases (PD-RLKs) found in planta. We summarize and discuss the current knowledge regarding RLPs/RLKs that reside at PD–PM channels in response to plant growth, development, and stress adaptation.

Plant Gene ◽  
2021 ◽  
Vol 26 ◽  
pp. 100283
Author(s):  
M. Iqbal R. Khan ◽  
Syed Uzma Jalil ◽  
Priyanka Chopra ◽  
Himanshu Chhillar ◽  
Antonio Ferrante ◽  
...  

Planta ◽  
2015 ◽  
Vol 241 (6) ◽  
pp. 1313-1324 ◽  
Author(s):  
Adeyemi O. Aremu ◽  
Nqobile A. Masondo ◽  
Kannan R. R. Rengasamy ◽  
Stephen O. Amoo ◽  
Jiří Gruz ◽  
...  

2020 ◽  
pp. 43-59 ◽  
Author(s):  
Preksha Shrivastav ◽  
Mrinalini Prasad ◽  
Teg Bahadur Singh ◽  
Arti Yadav ◽  
Deepika Goyal ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


2018 ◽  
Vol 19 (10) ◽  
pp. 3115 ◽  
Author(s):  
Vladimír Skalický ◽  
Martin Kubeš ◽  
Richard Napier ◽  
Ondřej Novák

Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.


Sign in / Sign up

Export Citation Format

Share Document