scholarly journals Novel Dihydroxy-Containing Ammonium Phosphate Based Poly(Lactic Acid): Synthesis, Characterization and Flame Retardancy

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 871 ◽  
Author(s):  
Rong-Kun Jian ◽  
Long Xia ◽  
Yuan-Fang Ai ◽  
De-Yi Wang

The aim of this work is to prepare flame-retardant biobased poly(lactic acid) materials through incorporating a novel flame retardant dihydroxy-containing ammonium phosphate (DAP) derived from 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane-2-oxide (DOP) and 2-amino-2-methyl-1,3-propanediol (AMPD). Interestingly, PLA modified with only 0.5% DAP passed UL-94 V-0 rating, and possessed a limiting oxygen index (LOI) value of 24.6%, which would further increase with the increasing loading of DAP. PLA/DAP did not exhibit obviously improved results in terms of heat release rate (HRR), as the loading of DAP was relatively low. It was found that DAP showed little effect on the thermal stability of PLA and the onset decomposition temperatures of PLA and PLA/DAP blends were very close. Besides, the degree of crystallization increased because of the plasticized effect of DAP. Based on the analyses of flame-retardant mechanism of DAP, it disclosed that DAP decomposed to generate incombustible compounds, such as water and ammonia, to dilute the concentration of oxygen and fuels, and then release some phosphorus-containing fragments that could produce phosphorus-containing free radicals to interrupt free-radical reactions, and finally noncombustible melt dripping was produced so as to bring away large amount of heat and stop the feedback of heat to the matrix.

2012 ◽  
Vol 24 (8) ◽  
pp. 738-746 ◽  
Author(s):  
Rui Zhang ◽  
Xifu Xiao ◽  
Qilong Tai ◽  
Hua Huang ◽  
Jian Yang ◽  
...  

Lignin–silica hybrids (LSHs) were prepared by sol–gel method and characterized by Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). LSH and ammonium polyphosphate (APP) were added into poly(lactic acid) (PLA) as a novel intumescent flame-retardant (IFR) system to improve the flame retardancy of PLA. The flame-retardant effect of APP and LSH in PLA was studied using limiting oxygen index (LOI), vertical burning (UL-94) tests and cone calorimeter. The thermal stability of PLA/APP/LSH composites was evaluated by thermogravimetric analysis (TGA). Additionally, the morphology and components of char residues of the IFR-PLA composites were investigated by SEM and XPS. With the addition of APP/LSH to PLA system, the morphology of the char residue has obviously changed. Compared with PLA/APP and PLA/APP/lignin, a continuous and dense intumescent charring layer with more phosphor in PLA composites is formed, which exhibits better flame retardancy. All the results show that the combination of APP and LSH can improve the flame-retardant property and increase the thermal stability of PLA composites greatly.


2011 ◽  
Vol 96 (9) ◽  
pp. 1557-1561 ◽  
Author(s):  
Lian-Lian Wei ◽  
De-Yi Wang ◽  
Hong-Bing Chen ◽  
Li Chen ◽  
Xiu-Li Wang ◽  
...  

2013 ◽  
Vol 98 (7) ◽  
pp. 1389-1396 ◽  
Author(s):  
Hai-Juan Lin ◽  
San-Rong Liu ◽  
Li-Jing Han ◽  
Xue-Mei Wang ◽  
Yi-Jie Bian ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2407
Author(s):  
Mingjun Niu ◽  
Zhongzhou Zhang ◽  
Zizhen Wei ◽  
Wanjie Wang

Poly(lactic) acid (PLA) is one of the most promising biobased materials, but its inherent flammability limits its applications. A novel flame retardant hexa-(DOPO-hydroxymethylphenoxy-dihydroxybiphenyl)-cyclotriphosphazene (HABP-DOPO) for PLA was prepared by bonding 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide (DOPO) to cyclotriphosphazene. The morphologies, mechanical properties, thermal stability and burning behaviors of PLA/HABP-DOPO blends were investigated using a scanning electron microscope (SEM), a universal mechanical testing machine, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning (UL-94) and a cone calorimeter test (CCT). The LOI value reached 28.5% and UL-94 could pass V-0 for the PLA blend containing 25 wt% HABP-DOPO. A significant improvement in fire retardant performance was observed for PLA/HABP-DOPO blends. PLA/HABP-DOPO blends exhibited balanced mechanical properties. The flame retardant mechanism of PLA/HABP-DOPO blends was evaluated.


2020 ◽  
Vol 72 (4) ◽  
pp. 13-21
Author(s):  
Diana Serbezeanu ◽  
Tachita Vlad-Bubulac ◽  
Elena Hamciuc ◽  
Corneliu Hamciuc ◽  
Gabriela Lisa ◽  
...  

The present study aimed to design macromolecular architectures having imide core in the main chain and bearing two 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide heterocycles in the side chain of each structural units as a synergetic two components key factor to induce attractive flame retardant properties in the resulted materials. The synthesis pathway consisted in the classical polycondensation reaction strategy using a phosphorus-containing diamine synthesized in the laboratory and three commercial dianhydrides co-monomers. The chemical structure confirmation of the phosphorus-containing polyimides has been performed by means of FTIR and NMR spectroscopy. The thermal stability of the products was introspected through TGA analysis. The char yields measured at 900oC ranged between 35% and 54%. Using these parameters limiting oxygen index values were theoretically calculated. Also, the microscale combustion calorimetry measurements have been conducted, in order to investigate the combustion mechanism of the synthesized phosphorus-containing polyimides.


2016 ◽  
Vol 53 (1) ◽  
pp. 45-63 ◽  
Author(s):  
Kun Wang ◽  
Jingjing Wang ◽  
Dan Zhao ◽  
Wentao Zhai

In this study, flame-retardant poly(lactic acid) foams with satisfactory cell structures were prepared by microcellular foaming technology using phosphorus-containing flame retardant and graphene as the charring agent. The introduction of 5–30 wt% flame retardant increased the limited oxygen index value of poly(lactic acid) from 19.0 to 26.5–37.8% and simultaneously increased the foam expansion of poly(lactic acid) foams from 4.4 to 5.8–17.5. In addition, all the prepared poly(lactic acid)/flame-retardant composites passed the UL-94 V-0 rating. The addition of 0.5 wt% graphene increased the limited oxygen index value of poly(lactic acid)/flame-retardant composite with flame-retardant content of 15 wt% from 27.9 to 29.2%, and more graphene additions improved the antidripping behavior of poly(lactic acid) composites. The possible mechanisms of the effects of the resultant cellular structure on the flame-retardant properties of poly(lactic acid) composites were also discussed.


2019 ◽  
Vol 32 (4) ◽  
pp. 359-370 ◽  
Author(s):  
Weiwei Zhang ◽  
Hongjuan Wu ◽  
Weihua Meng ◽  
Jiahe Li ◽  
Yumeng Cui ◽  
...  

Nanowires, nanosheets, and microflowers of nickel ammonium phosphate (NiNH4PO4·H2O) were synthesized by a mixed solvothermal method and used to improve the flame retardancy of epoxy resin (EP). The solvent concentration and surfactant content were found to play a key role in nucleation and growth of NiNH4PO4·H2O. The structure of NiNH4PO4·H2O was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The flame retardancy, thermostability, mechanical properties, and flame retardancy mechanism of EP/NiNH4PO4·H2O composites were analyzed using the limiting oxygen index (LOI), cone calorimetry (Cone), mechanical property tests, thermogravimetric analysis, and thermogravimetric–Fourier transform infrared spectroscopy. The results indicated that NiNH4PO4·H2O has proper thermal stability and greatly improves the flame retardancy of EP. The nanosheets outperformed the other morphologies; the EP/5% NiNH4PO4·H2O nanosheets have an LOI of 35.2%, which exceeds that of pure EP (24.7%). Furthermore, Cone showed that these nanosheets have the lowest peak heat release rate and peak smoke production rate, which are 69.1% and 36.5% lower than those of pure EP, respectively. NiNH4PO4·H2O can promote the formation of a stable char layer and release nonflammable gases, thus protecting the matrix by preventing heat and oxygen transfer and reducing the concentration of combustible gas. NiNH4PO4·H2O is expected to serve as a new high-efficiency flame retardant for EP.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1129 ◽  
Author(s):  
Ningjing Wu ◽  
Jihang Yu ◽  
Wenchao Lang ◽  
Xiaobing Ma ◽  
Yue Yang

A novel flame-retardant and toughened bio-based poly(lactic acid) (PLA)/glycidyl methacrylate-grafted natural rubber (GNR) composite was fabricated by sequentially dynamical vulcanizing and reactive melt-blending. The surface modification of aluminum hypophosphite (AHP) enhanced the interfacial compatibility between the modified aluminum hypophosphite by silane (SiAHP) and PLA/GNR matrix and the charring ability of the PLA/GNR/SiAHP composites to a certain extent, and the toughness and flame retardancy of the PLA/GNR/SiAHP composites were slightly higher than those of PLA/GNR/AHP composites, respectively. The notched impact strength and elongation of the PLA composite with 20 wt. %GNR and 18 wt.% SiAHP were 13.1 kJ/m2 and 72%, approximately 385% and 17 fold higher than those of PLA, respectively, and its limiting oxygen index increased to 26.5% and a UL-94 V-0 rating was achieved. Notedly, the very serious melt-dripping characteristics of PLA during combustion was completely suppressed. The peak heat release rate and total heat release values of the PLA/GNR/SiAHP composites dramatically reduced, and the char yield obviously increased with an increasing SiAHP content in the cone calorimeter test. The good flame retardancy of the PLA/GNR/SiAHP composites was suggested to be the result of a synergistic effect involving gaseous and condensed phase flame-retardant mechanisms. The high-performance flame-retardant PLA/GNR/SiAHP composites have great potential application as replacements for petroleum-based polymers in the automotive interior and building fields.


Sign in / Sign up

Export Citation Format

Share Document