cone calorimetry
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 81)

H-INDEX

20
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 435
Author(s):  
Feiyu Tian ◽  
Deliang Xu ◽  
Xinwu Xu

This study explored the feasibility of fabricating fire-retardant strandboard with low mechanical properties deterioration to the physico-mechanical properties. A hybrid fire-retardant system of ammonium polyphosphate (APP) and 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TBC) was investigated. Thermogravimetric analysis results show that both APP and TBC enhance the thermal stability and incombustibility of wood strands. An infrared spectrum was applied to investigate the effect of flame retardants on the curing behaviors of polymeric diphenylmethane diisocyanate (PMDI) resin. Based on the results of limiting oxygen index (LOI) and Cone calorimetry (CONE), APP and TBC both lead to a higher fire retardancy to strandboard. It is worth mentioning that the two flame retardants lead to evidently differential influences on the modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), and water-soaking thickness swelling (TS) properties of strandboard. Hence, a hybrid flame retardant is prominent in manufacturing strandboard with both good fire retardant and satisfying physico-mechanical properties.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 301
Author(s):  
Kamila Sałasińska ◽  
Peteris Cabulis ◽  
Mikelis Kirpluks ◽  
Andrejs Kovalovs ◽  
Paweł Kozikowski ◽  
...  

The production of hybrid layered composites allows comprehensive modification of their properties and adaptation to the final expectations. Different methods, such as hand lay-up, vacuum bagging, and resin infusion were applied to manufacture the hybrid composites. In turn, fabrics used for manufacturing composites were made of glass (G), aramid (A), carbon (C), basalt (B), and flax (F) fibers. Flexural, puncture impact behavior, and cone calorimetry tests were applied to establish the effect of the manufacturing method and the fabrics layout on the mechanical and fire behavior of epoxy-based laminates. The lowest flammability and smoke emission were noted for composites made by vacuum bagging (approximately 40% lower values of total smoke release compared with composites made by the hand lay-up method). It was demonstrated that multi-layer hybrid composites made by vacuum bagging might enhance the fire safety levels and simultaneously maintain high mechanical properties designed for, e.g., the railway and automotive industries.


2021 ◽  
Vol 35 (6) ◽  
pp. 1-7
Author(s):  
Myung-Kyu Lee ◽  
Seul-Hyun Park

The heat release rate (HRR) of fires can be determined from the relationship between the thermal pyrolysis rate of combustibles and the effective heat of combustion. To accurately determine the thermal pyrolysis rate of combustibles, it is important to understand the heat of reaction of combustibles. However, this parameter is difficult to measure for combustibles, such as wood, that produce charring during combustion because they undergo a multi-step pyrolysis reaction. In this study, the ISO 5660-1 standard method was used to perform cone calorimetry experiments to understand how the HRR is affected by the heat of reaction heat and charring properties of combustibles. To this end, the HRR calculated using FDS computational analysis was compared to the measured value from the ISO 5660-1 cone calorimetry experiments. A dehydrated Douglas-fir, an evergreen tree of the pine family, was used as a combustible material. The cone calorimetry experiment and FDS computational analysis results confirmed that increases in the heat of reaction and charring properties were directly correlated with the decrease in the HRR.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 66
Author(s):  
Mădălina Ioana Necolau ◽  
Celina Maria Damian ◽  
Radu Claudiu Fierăscu ◽  
Anita-Laura Chiriac ◽  
George Mihail Vlăsceanu ◽  
...  

Nanostructures are more and more evolved through extensive research on their functionalities; thus, the aim of this study was to obtain layered clay–graphene oxide nanohybrids with application as reinforcing agents in polyurea nanocomposites with enhanced thermal–mechanical and fire-retardant properties. Montmorillonite (MMT) was combined with graphene oxide (GO) and amine functionalized graphene oxide (GOD) through a new cation exchange method; the complex nanostructures were analyzed through FTIR and XPS to assess ionic interactions between clay layers and GO sheets by C1s deconvolution and specific C sp3, respective/ly, C-O secondary peaks appearance. The thermal decomposition of nanohybrids showed a great influence of MMT layers in TGA, while the XRD patterns highlighted mutual MMT and GO sheets crystalline-structure disruption by the d (002) shift 2θ = 6.29° to lower values. Furthermore, the nanohybrids were embedded in the polyurea matrix, and the thermo-mechanical analysis gave information about the stiffness of MMT–GO nanocomposites, while GOD insertion within the MMT layers resulted in a 30 °C improvement in the Tg of hard domains, as shown in the DSC study. The micro CT analysis show good dispersion of inorganic structures within the polyurea, while the SEM fracture images revealed smooth surfaces. Cone calorimetry was used to evaluate fire-retardant properties through limiting the oxygen index, and MMT–GOD based nanocomposites showed a 35.4% value.


2021 ◽  
Author(s):  
Junjie Wang ◽  
Xinyu Wang ◽  
Chenyu Zhou ◽  
Zhiquan Pan ◽  
Hong Zhou

Abstract This work focused on the effects of chitosan (CS) and 9,10-dihydro-9-oxo-10-phosphaphenanthrene-10-oxide (DOPO) on the flammable propertied of epoxy resin matrix. The EP composites were fabricated by direct mixing method through a general curing method. The influence of CS, DOPO and CS / DOPO on the resin was investigated through cone calorimetry tests (CC), UL-94 vertical burning, limiting oxygen index (LOI), thermal gravimetric analyzer (TGA), differential scanning calorimeter (DSC) and thermogravimetric analyzer-Fourier infrared combined system (TG-FTIR). The char residues of modified EPs after CC tests were investigated by FTIR, EDX and XPS. Under the 10% addition of CS / DOPO in EP, with the mass ratio of CS and DOPO of 1 : 1, 1 : 2, 1 : 3, 2 : 1 and 3 : 1, the flame retardancy properties of EPs all increased, but only if EP/10% CS1/DOPO2 and EP/10% CS2/DOPO1 achieved a V-0 rating and their values of LOI were 33.7% and 32.5%, respectively. Compared with EP, the peak heat release rate, peak smoke produce rate and total heat release of EP/10% CS1/DOPO2 and EP/10% CS2/DOPO1 decreased, especially, total smoke release decreased by 61.9% and 71.0%, the char residuals amount increased by 84.3% and 41.6%, and the average CO2 yield decreased by 55.4% and 55.0%, respectively. It is worth nothing that the mechanical properties increased, especially the flexural strength increased by 36.0% and 38.4%, respectively. The results indicated that DOPO and CS had important synergistic effects for simultaneous increase both the flame retardancy and mechanical properties of EP composites.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6375
Author(s):  
David De Smet ◽  
Madeleine Wéry ◽  
Miriam Bader ◽  
Ines Stachel ◽  
Michael Meyer ◽  
...  

Flame retardancy is often required in various textile applications. Halogenated flame retardants (FR) are commonly used since they have good FR performance. Several of these components are listed under REACH. Halogen-free FR compounds have been developed as alternatives. So far, not many biobased FR have made it to the market and are being applied in the textile sector, leaving great opportunities since biobased products are experiencing a renaissance. In this study, renewable FR based on sorbitol and isosorbide were synthesised. The reaction was performed in the melt. The resulting biobased FR were characterised via FT-IR, thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Cotton fabrics functionalized with the developed biobased FR passed ISO 15025 FR test. After washing, the FR properties of the fabrics decreased (longer afterflame and afterglow time) but still complied with ISO 15025, indicating the biobased FR were semi-permanent. The amount of residue of modified sorbitol and isosorbide measured at 600°C in air was 31% and 27%, respectively. Cotton treated with biobased modified FR showed no ignition during cone calorimetry experiments, indicating a flame retardancy. Furthermore, a charring of the FR containing samples was observed by means of cone calorimetry and TGA measurements.


2021 ◽  
Vol 5 (10) ◽  
pp. 274
Author(s):  
Fabienne Samyn ◽  
Roland Adanmenou ◽  
Serge Bourbigot ◽  
Sophie Duquesne ◽  
Maude Jimenez ◽  
...  

This study proposes an innovative solution to flame-retard a sandwich composite made of unsaturated polyester resin, glass fibre skins and polyester nonwoven core material. The strategy uses the core material as flame-retardant carrier, while the resin is also flame-retarded with aluminum trihydroxide (ATH). A screening of the fire-retardant performances of the core materials, covered with different types of phosphorous flame-retardant additives (phosphate, phosphinate, phosphonate), was performed using cone calorimetry. The best candidate was selected and evaluated in the sandwich panel. Great performances were obtained with ammonium polyphosphate (AP422) at 262 g/m2. The core material, when tested alone, did not ignite, and when used in the laminate, improved the fire behaviour by decreasing the peak of heat release rate (pHRR) and the total heat release (THR): the second peak in HRR observed for the references (full glass monolith and sandwich with the untreated core) was suppressed in this case. This improvement is attributed to the interaction occurring between the two FR additives, which leads to the formation of aluminophosphates, as shown using Electron Probe Micro-Analysis (EPMA), X-Ray Diffraction (XRD) and solid-state 31P Nuclear Magnetic Resonance (NMR). The influence of the FR add-on on the core, as well as the ATH loading in the matrix, was studied separately to optimize the material performances in terms of smoke and heat release. The best compromise was obtained using AP422 at 182 g/m2 and 160 phr of ATH.


2021 ◽  
Vol 5 (10) ◽  
pp. 258
Author(s):  
Latha Krishnan ◽  
Baljinder. K. Kandola ◽  
John R. Ebdon

This study investigated the effects of phosphorus fire retardants (FRs) in matrices from co-cured blends of an unsaturated polyester (UP) with inherently fire-retardant phenolic resoles (PH) on the mechanical and flammability properties of resultant glass fibre-reinforced composites. Three different phenolic resoles with UP have been used: (i) an ethanol soluble (PH-S), (ii) an epoxy-functionalised (PH-Ep), and (iii) an allyl-functionalised resin (PH-Al) with two different phosphorus FRs: resorcinol bis (diphenyl phosphate) (RDP) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The flammabilities of the resultant composites were evaluated using cone calorimetry and the UL-94 test. Cone calorimetric results showed reductions in peak heat release rate (PHRR) and total heat released (THR) as expected compared to those of UP and respective UP/PH composite laminates without FRs. UL-94 tests results showed that while all composites had HB rating, FR containing samples self-extinguished after removal of the flame. The mechanical properties of the composites were evaluated using flexural, tensile and impact tests. All FRs reduced the mechanical properties, and the reduction in mechanical properties was more severe in UP/PH-S (least compatible blends) composites with FRs than in UP/PH-Al (most compatible blends) composites with FRs. Amongst the different composites, those from UP/PH-Al with DOPO showed the best fire retardancy with little deterioration of mechanical performance.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5245
Author(s):  
Przemysław Rybiński ◽  
Bartłomiej Syrek ◽  
Anna Marzec ◽  
Bolesław Szadkowski ◽  
Małgorzata Kuśmierek ◽  
...  

Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants in polymer composites. We also investigate the effects of mixtures of these carbon and mineral fillers on the thermal, mechanical, and rheological properties of EPDM rubber composites. The thermal properties of the EPDM vulcanizates were analyzed using the thermogravimetric method. Flammability was determined by pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4332
Author(s):  
Percy Festus Alao ◽  
Laetitia Marrot ◽  
Heikko Kallakas ◽  
Alar Just ◽  
Triinu Poltimäe ◽  
...  

The effects of surface pretreatment (water and alkali) and modification with silane on moisture sorption, water resistance, and reaction to fire of hemp fiber reinforced polylactic acid (PLA) composites at two fiber loading contents (30 and 50 wt.%) are investigated in this work. Moisture adsorption was evaluated at 30, 50, 75 and 95% relative humidity, and water resistance was determined after a 28-day immersion period. The cone calorimetry technique was used to investigate response to fire. The fiber surface treatment resulted in the removal of cell wall components, which increased fiber individualization and homogeneity as shown in scanning microscopic pictures of the composite cross-section. Although the improved fiber/matrix bonding increased the composite’s water resistance, the different fiber treatments generated equal moisture adsorption results for the 30 wt.% reinforced composites. Overall, increasing the fiber amount from 30 to 50 wt.% increased the composite sensitivity to moisture/water, mainly due to the availability of more hydroxyl groups and to the development of a higher pore volume, but fire protection improved due to a reduction in the rate of thermal degradation induced by the reduced PLA content. The new Oswin’s model predicted the composite adsorption isotherm well. The 30 wt.% alkali and silane treated hemp fiber composite had the lowest overall adsorption (9%) while the 50 wt.% variant produced the highest ignition temperature (181 ± 18 °C).


Sign in / Sign up

Export Citation Format

Share Document