Experimental Analysis of the Effects of Varying Temperature and Viscosities on Foamy Oil Production

2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xianhong Tan ◽  
Wei Zheng ◽  
Taichao Wang ◽  
Guojin Zhu ◽  
Xiaofei Sun ◽  
...  

The supercritical multithermal fluids (SCMTF) were developed for deep offshore heavy oil reservoirs. However, its EOR mechanisms are still unclear, and its numerical simulation method is deficient. In this study, a series of sandpack flooding experiments were first performed to investigate the viability of SCMTF flooding. Then, a novel numerical model for SCMTF flooding was developed based on the experimental results to characterize the flooding processes and to study the effects of injection parameters on oil recovery on a lab scale. Finally, the performance of SCMTF flooding in a practical deep offshore oil field was evaluated through simulation. The experiment results show that the SCMTF flooding gave the highest oil recovery of 80.89%, which was 29.60% higher than that of the steam flooding and 11.09% higher than that of SCW flooding. The history matching process illustrated that the average errors of 3.24% in oil recovery and of 4.33% in pressure difference confirm that the developed numerical model can precisely simulate the dynamic of SCMTF flooding. Increases in temperature, pressure, and the mole ratio of scN2 and scCO2 mixture to SCW benefit the heavy oil production. However, too much increase in temperature resulted in formation damage. In addition, an excess of scN2 and scCO2 contributed to an early SCMTF breakthrough. The field-scale simulation indicated that compared to steam flooding, the SCMTF flooding increased cumulative oil production by 27122 m3 due to higher reservoir temperature, expanded heating area, and lower oil viscosity, suggesting that the SCMTF flooding is feasible in enhancing offshore heavy oil recovery.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 413-430
Author(s):  
Zhanxi Pang ◽  
Lei Wang ◽  
Zhengbin Wu ◽  
Xue Wang

Summary Steam-assisted gravity drainage (SAGD) and steam and gas push (SAGP) are used commercially to recover bitumen from oil sands, but for thin heavy-oil reservoirs, the recovery is lower because of larger heat losses through caprock and poorer oil mobility under reservoir conditions. A new enhanced-oil-recovery (EOR) method, expanding-solvent SAGP (ES-SAGP), is introduced to develop thin heavy-oil reservoirs. In ES-SAGP, noncondensate gas and vaporizable solvent are injected with steam into the steam chamber during SAGD. We used a 3D physical simulation scale to research the effectiveness of ES-SAGP and to analyze the propagation mechanisms of the steam chamber during ES-SAGP. Under the same experimental conditions, we conducted a contrast analysis between SAGP and ES-SAGP to study the expanding characteristics of the steam chamber, the sweep efficiency of the steam chamber, and the ultimate oil recovery. The experimental results show that the steam chamber gradually becomes an ellipse shape during SAGP. However, during ES-SAGP, noncondensate gas and a vaporizable solvent gather at the reservoir top to decrease heat losses, and oil viscosity near the condensate layer of the steam chamber is largely decreased by hot steam and by solvent, making the boundary of the steam chamber vertical and gradually a similar, rectangular shape. As in SAGD, during ES-SAGP, the expansion mechanism of the steam chamber can be divided into three stages: the ascent stage, the horizontal-expansion stage, and the descent stage. In the ascent stage, the time needed is shorter during ES-SAGP than during SAGP. However, the other two stages take more time during nitrogen, solvent, and steam injection to enlarge the cross-sectional area of the bottom of the steam chamber. For the conditions in our experiments, when the instantaneous oil/steam ratio is lower than 0.1, the corresponding oil recovery is 51.11%, which is 7.04% higher than in SAGP. Therefore, during ES-SAGP, not only is the volume of the steam chamber sharply enlarged, but the sweep efficiency and the ultimate oil recovery are also remarkably improved.


2013 ◽  
Vol 16 (01) ◽  
pp. 60-71 ◽  
Author(s):  
Sixu Zheng ◽  
Daoyong Yang

Summary Techniques have been developed to experimentally and numerically evaluate performance of water-alternating-CO2 processes in thin heavy-oil reservoirs for pressure maintenance and improving oil recovery. Experimentally, a 3D physical model consisting of three horizontal wells and five vertical wells is used to evaluate the performance of water-alternating-CO2 processes. Two well configurations have been designed to examine their effects on heavy-oil recovery. The corresponding initial oil saturation, oil-production rate, water cut, oil recovery, and residual-oil-saturation (ROS) distribution are examined under various operating conditions. Subsequently, numerical simulation is performed to match the experimental measurements and optimize the operating parameters (e.g., slug size and water/CO2 ratio). The incremental oil recoveries of 12.4 and 8.9% through three water-alternating-CO2 cycles are experimentally achieved for the aforementioned two well configurations, respectively. The excellent agreement between the measured and simulated cumulative oil production indicates that the displacement mechanisms governing water-alternating-CO2 processes have been numerically simulated and matched. It has been shown that water-alternating-CO2 processes implemented with horizontal wells can be optimized to significantly improve performance of pressure maintenance and oil recovery in thin heavy-oil reservoirs. Although well configuration imposes a dominant impact on oil recovery, the water-alternating-gas (WAG) ratios of 0.75 and 1.00 are found to be the optimum values for Scenarios 1 and 2, respectively.


2006 ◽  
Vol 9 (02) ◽  
pp. 154-164 ◽  
Author(s):  
Mingzhe Dong ◽  
S.-S. Sam Huang ◽  
Keith Hutchence

Summary The methane pressure-cycling (MPC) process is an enhanced-oil-recovery (EOR) scheme intended for application in some heavy-oil reservoirs after termination of either primary or waterflood production. The essence of the process is the restoration of the solution-gas-drive mechanism. The restoration is accomplished by reinjecting an appropriate amount of solution gas (mainly methane) and then repressuring the gas back into solution by injecting water until approximate original reservoir pressure is reached. This, aside from the replacement of produced oil by water, recreates the primary-production conditions. This novel recovery technique is being developed to target the considerable portion of heavy-oil resources located in thin reservoirs. Primary and secondary methods have managed to recover at best 10% of the initial oil in place (IOIP). Heat losses to overburden and underburden or bottomwater zones make thermal methods unsuitable for thin reservoirs. Sandpack-flood tests in 30.5-cm (length) × 5.0-cm (diameter) sandpacks were carried out for oils with a range of dead-oil viscosities from 1700 to 5400 mPa.s. The results showed that the pressure-cycling process could create a favorable condition for recharged gas to contact the remaining oil in reservoirs. This restores the situation whereby substantial amounts of gas are in solution for further "primary" production. The effects on the efficiency of the MPC process of cycle termination strategy, oil viscosity, and mobile-water saturation were investigated. Simulations were conducted to investigate the MPC process in three heavy-oil reservoirs in Saskatchewan, Canada. The effects on the process of infill wells, oil viscosity, gas-injection rate, and the presence of wormholes in reservoirs were studied. Introduction Heavy oil in thick-pay reservoirs (i.e., >10 m) is commonly produced with thermal-recovery methods. These methods (steam injection and its variants) are generally not suitable for thin reservoirs because of heat losses to overburden and underburden or bottomwater zones (Fairfield and White 1982; Dyer et al. 1994). The world's large untapped oil resource remaining after recovery by conventional technology offers potential for exploitation by a suitably developed tertiary-recovery technique. For example, Saskatchewan accounts for 62% of Canada's total heavy-oil resources (Bowers and Drummond 1997), including 1.7 billion m3 of proved reserves and 3.7 billion m3 of probable reserves (Saskatchewan Energy and Mines 1998). Of the province's proven initial heavy oil in place, 97% is contained in reservoirs where the pay zone is less than 10 m, and 55% in reservoirs with a pay zone less than 5 m thick (Huang et al. 1987; Srivastava et al. 1993). Primary and secondary methods combined recover, on average, only about 7% of the proven IOIP (Saskatchewan Energy and Mines 1998). The incentive is strong for the development of appropriate EOR techniques that will maximize the recovery potential of and profitability from these thin heavy-oil reservoirs. Extensive literature is available on CO2, flue gas, and produced-gas injection for heavy-oil recovery, including slug displacement, water alternating gas (WAG), and cyclic (huff ‘n’ puff) processes (Huang et al. 1987; Srivastava et al. 1993, 1994, 1999; Srivastava and Huang 1997; Ma and Youngren 1994; Issever et al. 1993; Olenick et al. 1992). A comparative study of the oil-recovery behavior for a 14.1°API heavy oil with different injection gases (CO2, flue gas, and produced gas) showed that CO2 was the best-suited gas for EOR of heavy oils (Srivastava et al. 1999). Cyclic CO2 injection for heavy-oil recovery was tested in the field, and field case histories indicated that oil production was enhanced (Olenick et al. 1992). However, natural CO2 sources are not available to most oil reservoirs. The cost of CO2 capture from flue gas and other sources may range from U.S. $25 to $70/ton (Padamsey and Railton 1993). Produced gas is available in large quantities at a much lower cost. With this consideration, produced gas can be an economically effective agent for heavy-oil recovery by the cyclic-injection process.


2021 ◽  
pp. 1-30
Author(s):  
Yu Shi ◽  
Yanan Ding ◽  
Qianghan Feng ◽  
Daoyong Yang

Abstract In this study, a systematical technique has been developed to experimentally and numerically evaluate the displacement efficiency in heavy oil reservoirs with enzyme under different conditions. Firstly, dynamic interfacial tensions (IFTs) between enzyme solution and heavy oil are measured with a pendant-drop tensiometer, while effects of pressure, temperature, enzyme concentration, and contact time of enzyme and heavy oil on equilibrium IFT were systematically examined and analyzed. After waterflooding, enzyme flooding was carried out in sandpacks to evaluate its potential to enhance heavy oil recovery at high water-cut stage. Numerical simulation was then performed to identify the underlying mechanisms accounting for the enzyme flooding performance. Subsequently, a total of 18 scenarios were designed to simulate and examine effects of the injection modes and temperature on oil recovery. Except for pressure, temperature, enzyme concentration, and contact time are found to impose a great impact on the equilibrium IFTs, i.e., a high temperature, a high enzyme concentration, and a long contact time reduce the equilibrium IFTs. All three enzyme flooding tests with different enzyme concentrations show the superior recovery performance in comparison to that of pure waterflooding. In addition to the IFT reduction, modification of relative permeability curves is found to be the main reason responsible for further mobilizing the residual heavy oil. A large slug size of enzyme solution usually leads to a high recovery factor, although its incremental oil production is gradually decreased. Plus, temperature is found to have a great effect on the recovery factor of enzyme flooding likely owing to reduction of both oil viscosity and IFT.


2001 ◽  
Vol 4 (05) ◽  
pp. 366-374 ◽  
Author(s):  
Yarlong Wang ◽  
Carl C. Chen

Summary A coupled reservoir-geomechanics model is developed to simulate the enhanced production phenomena in both heavy-oil reservoirs (northwestern Canada) and conventional oil reservoirs (i.e., North Sea). The model is developed and implemented numerically by fully coupling an extended geomechanics model to a two-phase reservoir flow model. Both the enhanced production and the ranges of the enhanced zone are calculated, and the effects of solid production on oil recovery are analyzed. Field data for solid production and enhanced oil production, collected from about 40 wells in the Frog Lake area (Lloydminster, Canada), are used to validate the model for the cumulative sand and oil production. Our studies indicate that the enhanced oil production is mainly contributed (1) by the reservoir porosity and permeability improvement after a large amount of sand is produced, (2) by higher mobility of the fluid caused by the movement of the sand particles, and (3) by foamy oil flow. A relative permeability reduction after a certain period of production may result in a pressure-gradient increase, which can promote further sand flow. This process can further improve the absolute permeability and the overall sand/fluid slurry production. Our numerical results simulate the fact that sand production can reach up to 40% of total fluid production at the early production period and decline to a minimum level after the peak, generating a high-mobility zone with a negative skin near the wellbore. Such an improvement reduces the near-well pressure gradient so that the sanding potential is weakened, and it permits an easier path for the viscous oil to flow into the well. Our studies also suggest that the residual formation cement is a key factor for controlling the cumulative sand production, a crucial factor that determines the success of a cold production operation and improved well completion. Introduction Field results from many heavy-oil reservoirs in northwestern Canada, such as Lindbergh and Frog Lake in the Lloydminster fields, suggest that primary recovery is governed mainly by the processes of sand production and foamy-oil flow.1–3 To manage production in such reservoirs, the challenge we face is optimizing production so that sand production is under control. For decades, industries have developed various highly effective tools for sand control. In practice, however, sand control often results in reduced oil flow or no production at all, particularly in heavy-oil reservoirs. For example, it has been observed that an average oil production of only 0.0 to 1.5 m3/d can be achieved in a well in which no sand production is allowed, while 7 to 15 m3/d oil may be produced with sand production.4 A significant improvement in production also has been reported by allowing a certain amount of sand produced before gravel packing in the high-rate production well in conventional reservoirs.5 It seems that sanding corresponds to a high oil production in these reservoirs, as sand production either increases the reservoir mobility or allows the development of highly permeable zones such as channels (wormholes).1 Encouraging sand production to enhance oil production, on the other hand, increases oil production costs owing to environmental problems. Consequently, neither trying to eliminate the sand production completely nor letting sand be produced freely, we attempt to develop a quantified model linking sand rate and reservoir enhancement so that we can forecast the economic outcome of such an operation. The investigation of sand production has been extensive, but it has been limited primarily to the areas of incipience of sand production and control. Sand arching and production initiation from a cavity simulating a perforating tunnel were studied, and a critical flow rate before sanding was found for single-phase steady-state flow.6 Such a study was extended to gas reservoirs, in which the gas density is a function of pressure,7 and to those formations subject to nonhydrostatic loading.8,9 Studying the enhanced production and the cumulative sand production, a series of simplified models for massive sand production have been developed.10,11 Similar models based on a coupled classic geomechanics model were also proposed thereafter.12,13 Because these aforementioned sand-production models are somewhat restricted by the fact that they are simplified by analytical methods, and in reality reservoir formations are much more complex (i.e. nonlinear behaviors), a numerical model coupling a multiphase transient fluid flow to elastoplastic geomechanical deformation is thus developed in this article; its purpose is to simulate these major nonlinear effects. According to the proposed model, a corresponding plastic yielding zone (or a disturbed zone) propagates into reservoir formation because of the transient fluid pressure diffusion, and the corresponding effective stresses change near a wellbore. A possible absolute permeability change inside the yielding zone is also considered, as dilatant deformation developed may enhance the permeability in the plastic zone. As a primary unknown, saturation is assumed to change with the induced pore-pressure change. The relative permeability is updated by the saturation, which in turn changes the response of the pore pressure and the skeleton deformation. A continuum mechanics approach is used in our calculation. Rather than characterizing each random wormhole proposed,1,4,5 we impose a homogeneous medium with an average permeability to make the numerical solutions manageable. The wormholes or geomechanical dilatation zone can be represented by a higher-permeability region in the plastic yielding zone owing to porosity enhancement,1 and solid flow is considered as a continuous moving phase along the transient fluid flow. Alternatively, a sand erosion model was introduced, and the geomechanics coupling to a single-phase flow was presented previously.14,15


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 305-315 ◽  
Author(s):  
Nina Naireka Goodarzi ◽  
Jonathan Luke Bryan ◽  
An Thuy Mai ◽  
Apostolos Kantzas

Summary Investigating the properties of live heavy oil, as pressure declines from the original reservoir pressure to ambient pressure, can aid in interpreting and simulating the response of heavy-oil reservoirs undergoing primary production. Foamy oil has a distinctly different and more complex behavior compared to conventional oil as the reservoir pressure depletes and the gas leaves solution from the oil. Solution gas separates very slowly from the oil; thus, conventional pressure/volume/temperature (PVT) measurements are not trivial to perform. In this paper, we present novel experiments that utilize X-ray computerized assisted technology (CT) scanning and low field nuclear magnetic resonance (NMR) techniques. These nondestructive tomographic methods are capable of providing unique in-situ measurements of how oil properties change as pressure depletes in a PVT cell. Specifically, this paper details measurements of oil density, oil and gas formation volume factor, solution gas/oil ratio, (GOR), and oil viscosity as a function of pressure. Experiments were initially performed at a slow rate, as in conventional PVT tests, allowing equilibrium to be reached at each pressure step. These results are compared to non-equilibrium tests, whereby pressure declines linearly with time, as in coreflood experiments. The incremental benefit of the proposed techniques is that they provide more detailed information about the oil, which improves our understanding of foamy-oil properties. Introduction Understanding fluid behavior of heavy oils is important for reservoir simulation and production response predictions. In heavy-oil reservoirs, the oil viscosity and density are commonly reported, but there is little experimental data in the literature reporting how oil properties change with pressure. This information would be especially useful for production companies seeking to understand and improve their primary (cold production) response. It is already widely known that foamy-oil behavior is a major cause for increased production in cold heavy-oil reservoirs along with sand production. Therefore, it would be valuable to first study the bulk fluid properties of live heavy oil prior to sandpack-depletion experiments. If the response of these properties to incremental pressure reduction can be established, this can be compared with fluid expansion during pressure depletion in a sandpack. CT scanning is useful in studying high-pressure PVT relationships. Images of a pressure vessel filled with live oil can be taken as the volume of the vessel is expanded and used to calculate bulk densities and free gas saturation. Also, CT images allow us to visually see where free gas is formed in the vessel. For example, CT scanning can be used to provide an indication of whether or not small bubbles nucleate within the oil and then slowly coalesce into a gas cap, or if free gas forms straight away. CT scanning provides much more information than conventional PVT cells. Uncertainties about where gas is forming in the oil, its effect on oil properties, and transient behavior cannot be reconciled in conventional PVT cells. Also, from CT images, the formation of microbubbles could be inferred based on the density of the oil with the dissolved gas. If the oil density decreases below the bubblepoint pressure, then it is likely that gas has come out of solution but remains within the oil; therefore, the resulting mixture is less dense than the original live oil. However, if oil density increases as the gas evolves, then the oil does not contain small gas bubbles, and gas has separated from the oil. Also, the free gas saturation growth with time, and comparison of images at equilibrium vs. immediately after the expansion of the vessel, can provide mass transfer information about gas bubble growth, supersaturation, and gravity separation. When characterizing heavy oil and bitumen fluid properties, oil viscosity is one of the most important pieces of information that has to be obtained. The high viscosities of heavy oil and bitumen present a significant obstacle to the technical and economic success of a given enhanced oil recovery option. As a result, in-situ oil viscosity measurement techniques would be of considerable benefit to the industry. In heavy-oil reservoirs that are undergoing primary production, this problem is further complicated by the presence of the gas leaving solution with the oil. Above the bubblepoint, the gas is fully dissolved into the oil; thus, the live oil exists as a single-phase fluid. Once the pressure drops below the bubblepoint and gas begins to leave solution, the oil viscosity behavior is no longer well understood. In addition to our CT analysis, this work also presents the use of low field NMR as a tool for making in-situ viscosity estimates of live and foamy oil. NMR spectra change significantly as pressure drops and gas leaves solution, and these changes can be correlated to physical changes in the oil viscosity.


Author(s):  
Ionescu (Goidescu) Nicoleta Mihaela ◽  
Vasiliu Viorel Eugen ◽  
Onutu Ion

Enhanced oil recovery (E.O.R) is oil recovery by the injection of materials not normally present in the reservoir. Thermal methods such as steam injection process are the best heavy oil recovery methods. Improvement of mobility ratio in the reservoir and economic recovery from heavy oil reservoirs depend mainly on reduction of heavy oil viscosity. For a steam injection process should consider the heat and mass transfer. Heavy oil reservoirs contain a considerable amount of hydrocarbon resources of the world. Meanwhile further demand for oil resources in the world , reduction of natural production from oil reservoirs, and finally price of oil in recent years have attracted notices to production methods from heavy and extra heavy oil reservoirs. High viscosity and great amounts of asphaltene in these hydrocarbons make difficulties in extraction, transportation, and process of heavy oil. In Romania there have been numerous theoretical and laboratory researches, as well as site experiments on the application of secondary recovery methods,Romanian specialists having a wide experience in this field


Sign in / Sign up

Export Citation Format

Share Document