scholarly journals K0.5Na0.5NbO3-SrTiO3/PVDF Polymer Composite Film with Low Remnant Polarization and High Discharge Energy Storage Density

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 310 ◽  
Author(s):  
Chuntian Chen ◽  
Lei Wang ◽  
Xinmei Liu ◽  
Wenlong Yang ◽  
Jiaqi Lin ◽  
...  

A high recoverable energy storage density polymer composite film has been designed in which the ferroelectric-paraelectric 0.85 (K0.5Na0.5NbO3)-0.15SrTiO3 (abbreviated as KNN-ST) solid solution particles were introduced into polyvinylidene fluoride (PVDF) polymer as functional fillers. The effects of the polarization properties of K0.5Na0.5NbO3 (KNN) and KNN-ST particles on the energy storage performances of KNN-ST/PVDF film were systemically studied. And the introduction of SrTiO3 (ST) was effective in reducing the remnant polarization of the particles, improving the dielectric properties and recoverable energy storage density of the KNN-ST/PVDF films. Compared to KNN/PVDF films, the dielectric permittivity of composite films was enhanced from 17 to 38 upon the introduction of ST. A recoverable energy storage density of 1.34 J/cm3 was achieved, which is 202.60% larger than that of the KNN/PVDF composite films. The interface between the particles and the polymer matrix was considered to the enhanced dielectric permittivity of the films. And the reduced remnant polarization of the composites was regarded as the improving high recoverable energy storage density. The results demonstrated that combing ferroelectric- paraelectric particles with polymers might be a key method for composites with excellent dielectric permittivity, high energy storage density, and energy efficiency.

Nanoscale ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 1914-1920 ◽  
Author(s):  
M. J. Chen ◽  
X. K. Ning ◽  
S. F. Wang ◽  
G. S. Fu

Self-assembled PbZrO3:NiO have been successfully fabricated. In this system, a giant recoverable energy storage density of 24.6 J cm−3 and polarization of Ps = 91 μC cm−2 were achieved.


2015 ◽  
Vol 41 (10) ◽  
pp. 13582-13588 ◽  
Author(s):  
M. Wang ◽  
W.L. Li ◽  
Y. Feng ◽  
Y.F. Hou ◽  
T.D. Zhang ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 591-601 ◽  
Author(s):  
Di Hu ◽  
Zhongbin Pan ◽  
Xiang Zhang ◽  
Haoran Ye ◽  
Zhouyang He ◽  
...  

The 0.65(NBT-BKT)–0.35SBT ceramic possesses an ultra-high recoverable energy storage density (Wrec ∼ 4.06 J cm−3) and maintains a relatively high efficiency (η = ∼87.3%).


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 651
Author(s):  
Xu Zheng ◽  
Qing Wang ◽  
Jinjin Luan ◽  
Yao Li ◽  
Ning Wang

Mechanical stability and repeatability are significant factors for the application of metal film flexible electronic devices. In this work, patterned metal/polymer composite films with good mechanical stability and repeatability were fabricated through nanoimprint technology. The mechanical properties characteristic of metal/polymer composite films were exhibited by resistance change (ΔR/R0) after cyclic tension and bending loading. It was found that the ΔR/R0 and error line of patterned metal/polymer composite film was far lower than the other control groups for repeated experiments, which indicates that patterned metal film has excellent mechanical properties and repeatability. The double cantilever beam method was employed to measure the interfacial adhesion properties of composite films. The average interfacial adhesion of patterned metal/polymer composite films is shown to be over 2.9 and 2.2 times higher than that of metal film deposited on bare polymer and metal nanowire-treated polymer substrates, respectively.


2019 ◽  
Vol 7 (14) ◽  
pp. 4072-4078 ◽  
Author(s):  
Zhongbin Pan ◽  
Di Hu ◽  
Yang Zhang ◽  
Jinjun Liu ◽  
Bo Shen ◽  
...  

The 0.94(BNT–BST)–0.06KNN ceramic possesses an excellent stored energy storage density (Ws = ∼3.13 J cm−3), a recoverable energy storage density (Wr = ∼2.65 J cm−3), and maintains a relatively high efficiency (η ∼ 84.6%).


Sign in / Sign up

Export Citation Format

Share Document