scholarly journals Extended 2,2′-Bipyrroles: New Monomers for Conjugated Polymers with Tailored Processability

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1068 ◽  
Author(s):  
Robert Texidó ◽  
Gonzalo Anguera ◽  
Sergi Colominas ◽  
Salvador Borrós ◽  
David Sánchez-García

The synthesis of 2,2′-bipyrroles substituted at positions 5,5′ with pyrrolyl, N-methyl-pyrrolyl and thienyl groups and their application in the preparation of conducting polymers is reported herein. The preparation of these monomers consisted of two synthetic steps from a functionalized 2,2′-bipyrrole: Bromination of the corresponding 2,2′-bipyrrole followed by Suzuki or Stille couplings. These monomers display low oxidation potential compared to pyrrole because of the extended length of their conjugation pathway. The resulting monomers can be polymerized through oxidative/electropolymerization. Electrical conductivity and electrochromic properties of the electrodeposited polymeric films were evaluated using 4-point probe measurements and cyclic voltammetry to evaluate their applicability in electronics.

Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


1991 ◽  
Vol 21 ◽  
pp. 139-162 ◽  
Author(s):  
L. Wuckel ◽  
M. Schwarzenberg ◽  
A. Bartl ◽  
H.G. Döge

2020 ◽  
Vol 9 (2) ◽  
pp. 142-152
Author(s):  
Fitria Rahmawati ◽  
◽  
Dwi Aman Nur Romadhona ◽  
Syulfi Faiz ◽  
◽  
...  

Research to prepare NaFePO4 cathode material from iron sand was conducted. The iron sand consists of ilmenite FeTiO3 and hematite Fe2O3. A caustic fusion method used to precipitate iron as Fe(OH)3 and it increased Fe content up to 94.71 %. Phosphate precipitation successfully produced trigonal FePO4 and monoclinic FePO4 comply with ICSD#412736 and ICSD#281079. The prepared-FePO4 was then used as a precursor for Na insertion by applying cyclic voltammetry mode within 2.0 – 4.0 V with 0.05 mVs-1 of the scan rate. It produced orthorhombic olivine NaFePO4 and a secondary phase of orthorhombic Na0.7FePO4. Impedance analysis at 20 Hz – 5 MHz found that the material provided a semicircle at 100 Hz peak point, indicating electrode-bulk interface with a resistance value of 1735W, comparable to the electrical conductivity of 5.36 x 10-6 Scm-1. Even though the conductivity value is quite lower than NaFePO4 prepared from a commercial FePO4 that has been conducted in our previous research, however the electrical conductivity still reliable for cathode.


2020 ◽  
Vol 835 ◽  
pp. 200-207
Author(s):  
Mariamu K. Ali ◽  
Ahmed Abd Moneim

Polyaniline (PANI) has been considered for thermoelectric (T.E) applications due to its facile preparation methods, easy doping-dedoping processes and its environmental stability. Like other conducting polymers (CPs), it has low thermal conductivity (usually below 1 Wm-1K-1) which is favorable for T.E applications, however studies have shown that it still suffers from low power factors as a result of low electrical conductivity. For this reason, PANI has been compounded with other materials such as polymers, inorganic nanoparticles and carbon nanoparticles to enhance its electrical conductivity, power factors (PF) and ultimately zT value.This work is focused on the synthesis and characterization of n-type polyaniline nanocomposites doped with reduced graphene oxide (rGO). The rGO was prepared through oxidation of graphite and subsequent reduction and incorporated into polyaniline through in situ polymerization and the resulting nanocomposites were characterized. Addition of rGO resulted in enhancement of the electrical conductivity of polyaniline from 10-3 S/cm to 10-1 S/cm which is two orders of magnitude higher. This contributed to the enhanced PF, an indication that thermoelectric behavior of conducting polymers can be boosted through compounding with inorganic materials.


Sign in / Sign up

Export Citation Format

Share Document