scholarly journals Shear Rheology of Unentangled and Marginally Entangled Ring Polymer Melts from Large-Scale Nonequilibrium Molecular Dynamics Simulations

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1194 ◽  
Author(s):  
Alexandros J. Tsamopoulos ◽  
Anna F. Katsarou ◽  
Dimitrios G. Tsalikis ◽  
Vlasis G. Mavrantzas

We present results for the steady state shear rheology of non-concatenated, unentangled and marginally entangled ring poly(ethylene oxide) (PEO) melts from detailed, atomistic nonequilibrium molecular dynamics (NEMD) simulations, and compare them to the behavior of the corresponding linear melts. The applied flow field spans a wide range of shear rates, from the linear (Newtonian) to the highly non-linear (described by a power law) regime. For all melts studied, rings are found to exhibit shear thinning but to a lesser degree compared to linear counterparts, mostly due to their reduced deformability and stronger resistance to alignment in the direction of flow. These features are attributed to the more compact structure of ring molecules compared to linear chains; the latter are capable of adopting wider and more open conformations even under shear due to the freedom provided by the free ends. Similar to linear melts, rings also exhibit a first and a second normal stress coefficient; the latter is negative. The ratio of the magnitude of the two coefficients remains practically constant with shear rate and is systematically higher than the corresponding one for linear melts. Emphasis was also given to the statistics of terminal (re-orientational) relaxation times which we computed by analyzing all chains in the simulated systems one by one; it was demonstrated that long time dynamics are strongly heterogeneous both for rings and (especially) linears. Repeating the analysis under flow conditions, and as expected, we found that the applied flow field significantly suppresses dynamic heterogeneity, especially for high shear rates well beyond the Newtonian plateau. Finally, a detailed geometrical analysis revealed that the average population of ring–ring threading events in the longest melt studied here (the PEO-5k ring) remains practically unaffected by the imposed flow rate even at strong shear rates, except for multi-threadings which disappear. To further analyze this peculiar and rather unexpected effect, we computed the corresponding survival times and penetration lengths, and found that the overwhelming majority of threadings under shear are extremely weak constraints, as they are characterized by very small penetration lengths, thus also by short survival times. They are expected therefore to play only a minor (if any) role on chain dynamics.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 476 ◽  
Author(s):  
Mohammad Nafar Sefiddashti ◽  
Brian Edwards ◽  
Bamin Khomami

The startup and steady shear flow properties of an entangled, monodisperse polyethylene liquid (C1000H2002) were investigated via virtual experimentation using nonequilibrium molecular dynamics. The simulations revealed a multifaceted dynamical response of the liquid to the imposed flow field in which entanglement loss leading to individual molecular rotation plays a dominant role in dictating the bulk rheological response at intermediate and high shear rates. Under steady shear conditions, four regimes of flow behavior were evident. In the linear viscoelastic regime ( γ ˙ < τ d − 1 ), orientation of the reptation tube network dictates the rheological response. Within the second regime ( τ d − 1 < γ ˙ < τ R − 1 ), the tube segments begin to stretch mildly and the molecular entanglement network begins to relax as flow strength increases; however, the dominant relaxation mechanism in this region remains the orientation of the tube segments. In the third regime ( τ R − 1 < γ ˙ < τ e − 1 ), molecular disentangling accelerates and tube stretching dominates the response. Additionally, the rotation of molecules become a significant source of the overall dynamic response. In the fourth regime ( γ ˙ > τ e − 1 ), the entanglement network deteriorates such that some molecules become almost completely unraveled, and molecular tumbling becomes the dominant relaxation mechanism. The comparison of transient shear viscosity, η + , with the dynamic responses of key variables of the tube model, including the tube segmental orientation, S , and tube stretch, λ , revealed that the stress overshoot and undershoot in steady shear flow of entangled liquids are essentially originated and dynamically controlled by the S x y component of the tube orientation tensor, rather than the tube stretch, over a wide range of flow strengths.


1990 ◽  
Vol 42 (10) ◽  
pp. 5844-5853 ◽  
Author(s):  
William G. Hoover ◽  
Anthony J. De Groot ◽  
Carol G. Hoover ◽  
Irving F. Stowers ◽  
Toshio Kawai ◽  
...  

2016 ◽  
Vol 46 (2) ◽  
pp. 569-582 ◽  
Author(s):  
K. H. Brink ◽  
H. Seo

AbstractContinental shelf baroclinic instability energized by fluctuating alongshore winds is treated using idealized primitive equation numerical model experiments. A spatially uniform alongshore wind, sinusoidal in time, alternately drives upwelling and downwelling and so creates highly variable, but slowly increasing, available potential energy. For all of the 30 model runs, conducted with a wide range of parameters (varying Coriolis parameter, initial stratification, bottom friction, forcing period, wind strength, and bottom slope), a baroclinic instability and subsequent eddy field develop. Model results and scalings show that the eddy kinetic energy increases with wind amplitude, forcing period, stratification, and bottom slope. The dominant alongshore length scale of the eddy field is essentially an internal Rossby radius of deformation. The resulting depth-averaged alongshore flow field is dominated by the large-scale, periodic wind forcing, while the cross-shelf flow field is dominated by the eddy variability. The result is that correlation length scales for alongshore flow are far greater than those for cross-shelf velocity. This scale discrepancy is qualitatively consistent with midshelf observations by Kundu and Allen, among others.


2020 ◽  
Vol 9 (1) ◽  
pp. 11-25
Author(s):  
Jude S. Alexander ◽  
Christopher Maxwell ◽  
Jeremy Pencer ◽  
Mouna Saoudi

The ready availability of codes such as LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for molecular dynamics simulations has opened up the realm of atomistic modelling to novice code users with an interest in computational materials modelling but who lack the appropriate theoretical or computational background. As such, there is significant risk of the “user effect” having a negative impact on the quality of results obtained using such codes. Here, we present a “how-to” procedure for equilibrium molecular dynamics-based nuclear fuel thermal conductivity calculations using the Green–Kubo method with an interatomic potential developed by Cooper et al. [ 1 ]. The various steps of the simulation are identified and explained, along with criteria to assess the quality of the intermediate and final results, discussion of some problems that can arise during a simulation, and some inherent limitations of the method. Calculated thermal conductivities for UO2 and ThO2 will be compared with the available experimental data and also with similar thermal conductivity calculations using nonequilibrium molecular dynamics, reported in the open literature.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaz0777 ◽  
Author(s):  
Andrea Giuntoli ◽  
Francesco Puosi ◽  
Dino Leporini ◽  
Francis W. Starr ◽  
Jack F. Douglas

We examine the influence of steady shear on structural relaxation in a simulated coarse-grained unentangled polymer melt over a wide range of temperature and shear rates. Shear is found to progressively suppress the α-relaxation process observed in the intermediate scattering function, leading ultimately to a purely inertially dominated β-relaxation at high shear rates, a trend similar to increasing temperature. On the basis of a scaling argument emphasizing dynamic heterogeneity in cooled liquids and its alteration under material deformation, we deduce and validate a parameter-free scaling relation for both the structural relaxation time τα from the intermediate scattering function and the “stretching exponent” β quantifying the extent of dynamic heterogeneity over the entire range of temperatures and shear rates that we can simulate.


2004 ◽  
Vol 821 ◽  
Author(s):  
James E. Hammerberg ◽  
Timothy C. Germann ◽  
Brad Lee Holian ◽  
Ramon Ravelo

AbstractWe present the results of large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations for Cu/Ag interfaces sliding in the velocity regime 0≤v≤1Km/sec. System sizes of 2.8 × 106 atoms are considered using Embedded Atom Method (EAM) potentials. Single crystals with 010 interfaces sliding along the <100> direction are considered. We discuss the observed velocity weakening in the tangential force at high velocities, and its connection with the observed dislocation structure and nanostructure that are nucleated during dry sliding.


Author(s):  
David Chelidze

Long-time numerical simulations of large-scale mechanistic models of complex systems (e.g., molecular dynamics, computational fluid dynamics, structural finite element, or multi-body dynamics models) are still problematic, either due to numerical instabilities or the excessive necessary computational resources. Therefore, reduced models that can be simulated for long-time and provide truthful approximations to the actual long-time dynamics, are needed. A new framework — based on new concepts of dynamical consistency and subspace robustness — for identifying subspaces suitable for reduced-order model development is presented. Model reductions based on proper and smooth orthogonal decompositions (POD and SOD, respectively) are considered and tested using a nonlinear four-degree-of-freedom model. It is shown that the new framework identifies subspaces that provide accurate model reductions for a range of forcing parameters, and that only four and higher dimensional models could be dynamically consistent. In addition, for reduced-order models based on randomly driven data, a four-dimensional SOD-based model outperformed a five-dimensional POD-based model. Finally, randomly driven data-based models generally outperformed harmonically driven data-based models when tested for a wide range of forcing amplitudes.


Author(s):  
Denise Schmitt ◽  
Michael Kolb ◽  
Johannes Weinzierl ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

At the Institute of Thermodynamics, Technical University of Munich a large scale atmospheric combustion test rig has been designed and set up. The experimental setup is comprised of two burning zones: A first zone consists of 16 burners providing vitiated air at 1776K, into which a secondary fuel-air mixture jet is injected and ignited by the hot cross flow. The phenomenon is known in the literature as a reacting jet in hot cross flow. The hot data is compared to the cold case in order to show differences in the flow field due to flame propagation. For evaluating the flow field several experimental analyses have been applied so far (OH*, High-Speed PIV, Mixture Analysis). The focus of this paper is on the momentum ratios J = 4–10 with Jet Reynolds Numbers between 20,000 and 80,000. For the cold case the flow field is measured and compared with the reacting jet. In the injector the air and the natural gas are perfectly premixed. The equivalence ratio of the jet is varied over a wide range of mixtures (ϕ = 0.05–0.77) resulting in an adiabatic flame temperature of the jet between 800 and 2200K. As the pictures of the chemiluminescence analysis show the jet gas ignites immediately upon entering the hot cross flow. The distinct influence of the equivalence ratio on the flame length and shape can be seen in the data. The trajectory of the flame penetrates further into the channel compared to the trajectory of the cold case caused by the reaction in the flame and its resulting gas expansion. Due to the large diameter of the jet in the experiment the origins of the dominant flow patterns are obtained with high spatial resolution. Following this, flame anchoring mechanisms at different operation points are derived.


Sign in / Sign up

Export Citation Format

Share Document