scholarly journals EQUILIBRIUM MOLECULAR DYNAMICS CALCULATIONS OF THERMAL CONDUCTIVITY: A “HOW-TO” FOR THE BEGINNERS

2020 ◽  
Vol 9 (1) ◽  
pp. 11-25
Author(s):  
Jude S. Alexander ◽  
Christopher Maxwell ◽  
Jeremy Pencer ◽  
Mouna Saoudi

The ready availability of codes such as LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for molecular dynamics simulations has opened up the realm of atomistic modelling to novice code users with an interest in computational materials modelling but who lack the appropriate theoretical or computational background. As such, there is significant risk of the “user effect” having a negative impact on the quality of results obtained using such codes. Here, we present a “how-to” procedure for equilibrium molecular dynamics-based nuclear fuel thermal conductivity calculations using the Green–Kubo method with an interatomic potential developed by Cooper et al. [ 1 ]. The various steps of the simulation are identified and explained, along with criteria to assess the quality of the intermediate and final results, discussion of some problems that can arise during a simulation, and some inherent limitations of the method. Calculated thermal conductivities for UO2 and ThO2 will be compared with the available experimental data and also with similar thermal conductivity calculations using nonequilibrium molecular dynamics, reported in the open literature.

Author(s):  
Keivan Esfarjani ◽  
Gang Chen ◽  
Asegun Henry

Based on first-principles density-functional calculations, we have developed and tested a force-field for silicon, which can be used for molecular dynamics simulations and the calculation of its thermal properties. This force field uses the exact Taylor expansion of the total energy about the equilibrium positions up to 4th order. In this sense, it becomes systematically exact for small enough displacements, and can reproduce the thermodynamic properties of Si with high fidelity. Having the harmonic force constants, one can easily calculate the phonon spectrum of this system. The cubic force constants, on the other hand, will allow us to compute phonon lifetimes and scattering rates. Results on equilibrium Green-Kubo molecular dynamics simulations of thermal conductivity as well as an alternative calculation of the latter based on the relaxation-time approximation will be reported. The accuracy and ease of computation of the lattice thermal conductivity using these methods will be compared. This approach paves the way for the construction of accurate bulk interatomic potentials database, from which lattice dynamics and thermal properties can be calculated and used in larger scale simulation methods such as Monte Carlo.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Mohammad Bagheri Motlagh ◽  
Mohammad Kalteh

Abstract In this paper, molecular dynamics simulation is used to investigate the effect of copper and argon nanochannels size on the thermal conductivity of argon. Thermal conductivity is calculated by nonequilibrium molecular dynamics (NEMD) simulation. Simulations are performed for different distances between the walls. Results for both copper and argon walls are investigated individually. Results show that the existence of argon walls has little effect on the thermal conductivity. However, the amount of it for the argon confined between the copper walls is affected by the distance between the two walls. In the same way, the effect of wall roughness on the thermal conductivity is investigated, which shows that roughness is effective only for low distances between the walls. Also, the thermal conductivity of argon under Poiseuille flow in a nanochannel is studied. The results indicate that by increasing the driving force, the thermal conductivity increases and the increase ratio is higher for larger forces.


2012 ◽  
Vol 501 ◽  
pp. 64-69 ◽  
Author(s):  
Yan He ◽  
Yuan Zheng Tang ◽  
Man Ding ◽  
Lian Xiang Ma

Normal thermal conductivity of amorphous and crystalline SiO2nano-films is calculated by nonequilibrium molecular dynamics (NEMD) simulations in the temperature range from 100 to 700K and thicknesses from 2 to 6nm. The calculated temperature and thickness dependences of thermal conductivity are in good agreement with previous literatures. In the same thickness, higher thermal conductivity is obtained for crystalline SiO2nano-films. And more importantly, for amorphous SiO2nano-films, thickness can be any direction of x, y, z-axis without effect on the normal thermal conductivity, for crystalline SiO2nano-films, the different thickness directions obtain different thermal conductivity results. The different results of amorphous and crystalline SiO2nano-films simply show that film thickness and grain morphology will cause different effects on thermal conductivity.


1999 ◽  
Vol 584 ◽  
Author(s):  
Xiaotao Su ◽  
Rajiv K. Kalia ◽  
Anupam Madhukar ◽  
Aiichiro Nakano ◽  
Priya Vashishta

AbstractLarge-scale molecular dynamics simulations are performed to investigate the atomiclevel stresses on InAs/GaAs mesas. The simulations are based on an interatomic-potential scheme for InAs/GaAs systems which depends on the local chemical composition. Multiresolution techniques are used to speed up the simulations. InAs/GaAs square mesas with { 101 }-type sidewalls are studied. The atomic-level pressure distribution and surface atomic stresses on the sidewalls with 12, 10, 8 and 6 monolayers of InAs overlayers have been calculated.


2020 ◽  
Vol 17 (4) ◽  
pp. 1566-1570
Author(s):  
Xianqi Wei ◽  
Zelin Li ◽  
Junchen Lu ◽  
Shunlong Xu ◽  
Yuancheng Zhu ◽  
...  

Thermal transport of graphene occupies a unique place in thermal management of electronic devices, especially for nanosize devices with high-density integration and high dissipated power. The structure of graphene on nanometer scale changes its thermal conductance. Here, the thermal characters of graphene have been researched by nonequilibrium molecular dynamics simulation (NEMDS) at room temperature. Special attention is focused on the edge type (zigzag or armchair) and nanostructure size dependence of conductivity for heat. The consequences suggest that the thermal conductivity of zigzag edge has been higher than that of armchair, which is because of the higher phonon group velocities. Furthermore, thermal conductivity shows a rising tendency, when the model is calculated from length of 21.84 nm to 43.78 nm. The result indicates that the thermal property performs a strong dependence on nanostructure size which is less than phonon mean free path (775 nm). Our research highlights the significance of structure attribute relationships together with providing useful guideline in calculations for nanosize devices thermal management.


2015 ◽  
Vol 1105 ◽  
pp. 285-289 ◽  
Author(s):  
Jessa Mae P. Tagalog ◽  
Cachey Girly Alipala ◽  
Giovanni J. Paylaga ◽  
Naomi T. Paylaga ◽  
Rolando V. Bantaculo

This study examines the nature of thermal transport properties of single layer two-dimensional honeycomb structures of silicon-germanene nanoribbon (SiGeNR), silicene nanoribbon (SiNR) and germanene nanoribbon (GeNR) which have not yet been characterized experimentally. SiGeNR, SiNR and GeNR are the allotropes of silicon-germanium, silicon and germanium, respectively, withsp2hybridization. The thermal conductivity of the materials has been investigated using Tersoff potential through LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) by performing the molecular-dynamics simulations. The temperature is varied (50 K, 77 K, 150 K, 300 K, 500 K, 700 K, 1000 K, and 1200 K) with fixed nanoribbon dimension of 50 nm × 10 nm. The length is also varied (10 nm, 20 nm, 30 nm, 40 nm, and 50 nm) while the temperature is fixed at room temperature and the width is also fixed at 10 nm. The obtained results showed that the thermal conductivity of SiGeNR at room temperature is approximately 10 times higher than GeNR and approximately 6 times higher compared to SiNR. The thermal conductivity increases as the temperature is increased from 50 K – 300 K, and as the temperature is further increased, the thermal conductivity decreases with temperature. Moreover, the thermal conductivity in SiGeNR, SiNR, and GeNR increases as the length is being increased. Predicting new features of SiGeNR, SiNR and GeNR open new possibilities for nanoelectronic device applications of group IV two-dimensional materials.


Sign in / Sign up

Export Citation Format

Share Document