scholarly journals Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1411 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Muhamad H. Hamsan ◽  
Muaffaq M. Nofal ◽  
Wrya O. Karim ◽  
Iver Brevik ◽  
...  

This report presents the preparation and characterizations of solid biopolymer blend electrolyte films of chitosan as cationic polysaccharide and anionic dextran (CS: Dextran) doped with ammonium iodide (NH4I) to be utilized as electrolyte and electrode separator in electrical double-layer capacitor (EDLC) devices. FTIR and XRD techniques were used to study the structural behavior of the films. From the FTIR band analysis, shifting and broadening of the bands were observed with increasing salt concentration. The XRD analysis indicates amorphousness of the blended electrolyte samples whereby the peaks underwent broadening. The analysis of the impedance spectra emphasized that incorporation of 40 wt.% of NH4I salt into polymer electrolyte exhibited a relatively high conductivity (5.16 × 10−3 S/cm). The transference number measurement (TNM) confirmed that ion (tion = 0.928) is the main charge carriers in the conduction process. The linear sweep voltammetry (LSV) revealed the extent of durability of the relatively high conducting film which was 1.8 V. The mechanism of charge storage within the fabricated EDLC has been explained to be fully capacitive behavior with no redox peaks appearance in the cyclic voltammogram (CV). From this findings, four important parameters of the EDLC; specific capacitance, equivalent series resistance, energy density and power density were calculated as 67.5 F/g, 160 ohm, 7.59 Wh/kg and 520.8 W/kg, respectively.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2103 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Mohamad A. Brza ◽  
Iver Brevik ◽  
Muhamad H. Hafiz ◽  
Ahmad S.F.M. Asnawi ◽  
...  

This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device’s performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 363
Author(s):  
Jihad M. Hadi ◽  
Shujahadeen B. Aziz ◽  
Salah R. Saeed ◽  
Mohamad A. Brza ◽  
Rebar T. Abdulwahid ◽  
...  

In this study, biopolymer composite electrolytes based on chitosan:ammonium iodide:Zn(II)-complex plasticized with glycerol were successfully prepared using the solution casting technique. Various electrical and electrochemical parameters of the biopolymer composite electrolytes’ films were evaluated prior to device application. The highest conducting plasticized membrane was found to have a conductivity of 1.17 × 10−4 S/cm. It is shown that the number density, mobility, and diffusion coefficient of cations and anions fractions are increased with the glycerol amount. Field emission scanning electron microscope and Fourier transform infrared spectroscopy techniques are used to study the morphology and structure of the films. The non-Debye type of relaxation process was confirmed from the peak appearance of the dielectric relaxation study. The obtained transference number of ions (cations and anions) and electrons for the highest conducting sample were identified to be 0.98 and 0.02, respectively. Linear sweep voltammetry shows that the electrochemical stability of the highest conducting plasticized system is 1.37 V. The cyclic voltammetry response displayed no redox reaction peaks over its entire potential range. It was discovered that the addition of Zn(II)-complex and glycerol plasticizer improved the electric double-layer capacitor device performances. Numerous crucial parameters of the electric double-layer capacitor device were obtained from the charge-discharge profile. The prepared electric double-layer capacitor device showed that the initial values of specific capacitance, equivalence series resistance, energy density, and power density are 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.


Sign in / Sign up

Export Citation Format

Share Document