scholarly journals pH Tunable Thin Film Gradients of Magnetic Polymer Colloids for MRI Diagnostics

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2116
Author(s):  
Sumera Khizar ◽  
Nasir M. Ahmad

Magnetic polymer colloids comprising of magnetite (Fe3O4) nanoparticles and Eudragit E100 were employed to fabricate thin film gradients and were investigated for in-vitro magnetic resonance imaging. Magnetic polymer colloids (MPC) and polyacrylic acid (PAA) with stimuli-responsive cationic and anionic functional groups respectively facilitate the formation of thin film gradients via layer by layer technique. The characteristics of films were controlled by changing the pH and level of the adsorbing solutions that lead to the development of gradient films having 5.5, 10.5 and 15.5 bilayers. Optical microscopy, scanning electron microscopy and magnetic force microscopy was carried out to determine the surface coverage of films. Surface wettability demonstrated the hydrophilicity of adsorbed colloids. The developed thin-film gradients were explored for in vitro magnetic resonance imaging that offers a point of care lab-on-chip as a dip-stick approach for ultrasensitive in-vitro molecular diagnosis of biological fluids.

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Sumera Khizar ◽  
Nasir Mahmood Ahmad ◽  
Hassan Saleem ◽  
Muhammad Asif Hamayun ◽  
Sadia Manzoor ◽  
...  

A stable oil-in-water (O/W) magnetic emulsion was prepared by the emulsification of organic ferrofluid in an aqueous media, and its theranostic applications were investigated. The synthesis and characterization of the organic ferrofluid were carried out comprising of superparamagnetic maghemite nanoparticles with oleic acid coating stabilized in octane. Both exhibit spherical morphology with a mean size of 6 nm and 200 nm, respectively, as determined by TEM. Thermogravimetric analysis was carried out to determine the chemical composition of the emulsion. The research work described here is novel and elaborates the fabrication of thin-film gradients with 5, 10, 15, and 20 bilayers by layer-by-layer technique using polydimethyl diallyl ammonium chloride (PDAC) and prepared magnetic colloidal particles. The thin-film gradients were characterized for their roughness, morphology, and wettability. The developed gradient films and colloids were explored in magnetic resonance imaging (MRI) and hyperthermia. T1- and T2-weighted images and their corresponding signal intensities were obtained at 1.5 T. A decreasing trend in signal intensities with an increase in nanoparticle concentration in colloids and along the gradient was observed in T2-weighted images. The hyperthermia capability was also evaluated by measuring temperature rise and calculating specific absorption rates (SAR). The SAR of the colloids at 259 kHz, 327 kHz, and 518 kHz were found to be 156 W/g, 255 W/g, and 336 W/g, respectively. The developed magnetic combinatorial thin-film gradients present a significant potential for the future efficient simultaneous diagnostic and therapeutic bioapplications.


2015 ◽  
Vol 3 (43) ◽  
pp. 8499-8507 ◽  
Author(s):  
Di-Wei Zheng ◽  
Qi Lei ◽  
Si Chen ◽  
Wen-Xiu Qiu ◽  
Meng-Yi Liu ◽  
...  

Novel layer by layer (LBL) microcapsules for macromolecular drug delivery and pH-sensitive MR imaging were designed and tested both in vitro and in vivo.


1991 ◽  
Vol 65 (05) ◽  
pp. 549-552 ◽  
Author(s):  
A Blinc ◽  
G Planinšič ◽  
D Keber ◽  
O Jarh ◽  
G Lahajnar ◽  
...  

SummaryMagnetic resonance imaging was employed to study the dependence of clot lysing patterns on two different modes of transport of urokinase into whole blood clots. In one group of clots (nonperfused clots, n1 = 10), access of urokinase to the fibrin network was possible by diffusion only, whereas in the other group (perfused clots, n2 = 10) bulk flow of plasma containing urokinase was instituted through occlusive clots by a pressure difference of 3 .7 kPa (37 cm H2O) across 3 cm long clots with a diameter of 4 mm. It was determined separately that this pressure difference resulted in a volume flow rate of 5.05 ± 2.4 × 10−2 ml/min through occlusive clots. Perfused clots diminished in size significantly in comparison to nonperfused ones already after 20 min (p <0.005). Linear regression analysis of two-dimensional clot sizes measured by MRI showed that the rate of lysis was more than 50-times faster in the perfused group in comparison to the nonperfused group. It was concluded that penetration of the thrombolytic agent into clots by perfusion is much more effective than by diffusion. Our results might have some implications for understanding the differences in lysis of arterial and venous thrombi.


2016 ◽  
Vol 13 (7) ◽  
pp. 697-705 ◽  
Author(s):  
Chen Zhu ◽  
Xiao Enhua ◽  
Shang Quanliang ◽  
Kang Zhen ◽  
Tan Huilong ◽  
...  

2021 ◽  
Vol 315 ◽  
pp. 110900
Author(s):  
Jiaqi Hu ◽  
Yi Chen ◽  
Hui Zhang ◽  
Zhenxia Chen ◽  
Yun Ling ◽  
...  

1986 ◽  
Vol 21 (9) ◽  
pp. S5
Author(s):  
John Drace ◽  
Stuart Young ◽  
Dieter Enzmann

Sign in / Sign up

Export Citation Format

Share Document