scholarly journals Establishment of a CoMFA Model Based on the Combined Activity of Bioconcentration, Long-Range Transport, and Highest Infrared Signal Intensity and Molecular Design of Environmentally Friendly PBB Derivatives

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 356
Author(s):  
Luze Yang ◽  
Minghao Li ◽  
Miao Liu

In the current study, a comparative molecular field analysis (CoMFA) model with the combined activity of polybrominated biphenyls (PBBs) bioconcentration, long-range transport, and the highest infrared signal intensity (weight ratio of 5:4:1) was constructed based on the threshold method and was further evaluated and analyzed. PBB-153 derivatives with improved combined activity values of bioconcentration, long-range transport, and the highest infrared signals intensity were designed based on contour maps of the CoMFA model. The environmental stability and functionality of the derivatives were also evaluated. The constructed model showed good prediction ability, fitting ability, stability, and external prediction ability. The contribution rates of electrostatic and steric fields to the combined activity of PBBs were 53.4% and 46.6%, respectively. Four PBB-153 derivatives with significantly improved bioconcentration, long-range transport and the highest infrared signal intensity (the combined activity value of these three parameters decreased) were screened with good environmental stability and functionality. Results validated the accuracy and reliability, and ability of the generated model to realize the simultaneous modification of the three activities of the target molecule. The binding ability of the designed derivatives to food chain biodegradation enzymes increased, thereby verifying the improvement in the bioconcentration. The half-lives of the derivatives in air and their ability to be absorbed by the plants significantly improved compared to the target molecule, further showing that the long-range transport of derivatives was reduced. In addition, the introduction of the –NO group caused the N =O stretching vibration of the derivatives to increase the infrared signal intensity. The present model provides a theoretical design method for the molecular modification of environmentally friendly PBBs.

Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

Grana ◽  
1988 ◽  
Vol 27 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Annie Gérard Peeters ◽  
Heinrich Zoller

2008 ◽  
Vol 8 (11) ◽  
pp. 2999-3014 ◽  
Author(s):  
A. van Donkelaar ◽  
R. V. Martin ◽  
W. R. Leaitch ◽  
A. M. Macdonald ◽  
T. W. Walker ◽  
...  

Abstract. We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem) and use it to interpret the observations. Aerosol Optical Depth (AOD) retrieved from two satellite instruments (MISR and MODIS) for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa), with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30%) and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by 0.32 μg/m3 per 10% increase in the simulated fraction of Asian sulfate, and suggest current East Asian emissions episodically degrade local air quality by more than 1.5 μg/m3.


Sign in / Sign up

Export Citation Format

Share Document