scholarly journals Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 867 ◽  
Author(s):  
Mostafa Katouzian ◽  
Sorin Vlase

The homogenization theory, used for the study of differential equations with periodic coefficients, with a rapid variation, is used in the paper for the analysis of the creep phenomenon of composite materials, reinforced with fibers. Generally, a polymer composite having a matrix with a viscoelastic response manifests a creep behavior. A good knowledge of mechanical constants allows us to predict the time response under the action of a load, which is important in engineering. The homogenization method is used to determine the engineering constants for a composite reinforced with carbon fibers. The method is applied for the particular case of fiber-reinforced unidirectional composites to obtain the equations that finally offer the required values. The epoxy matrix Fibredux 6376C is reinforced with carbon fibers T800 and the thermoplastic specimens made by APC2 material is reinforced with carbon fibers of the type IM6. The experimental results give a good concordance with the theoretical predictions.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3003
Author(s):  
Andrzej K. Bledzki ◽  
Holger Seidlitz ◽  
Jonas Krenz ◽  
Krzysztof Goracy ◽  
Magdalena Urbaniak ◽  
...  

The paper presents some examples of new technological solutions for the recovery and re-use of recycled carbon fiber in automotive and railway industries, as well as in aviation and wind turbine constructions. The new technologies of fiber recovery that are described can enable the mass-scale use of recycled carbon fiber in the future.


2016 ◽  
Vol 07 (03) ◽  
pp. 1650006 ◽  
Author(s):  
Alexander L. Kalamkarov ◽  
Igor V. Andrianov ◽  
Pedro M. C. L. Pacheco ◽  
Marcelo A. Savi ◽  
Galina A. Starushenko

The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.


2005 ◽  
Vol 05 (03) ◽  
pp. 443-454
Author(s):  
S. A. ASGARI ◽  
A. M. HAMOUDA ◽  
S. B. MANSOR ◽  
E. MAHDI ◽  
R. WIRZA ◽  
...  

This paper describes a theoretical approach to compare two types of fiber reinforced composite materials for femoral component of hip implants. The natural fiber reinforced composite implant is compared with carbon fiber reinforced composite and the results are evaluated against the control solution of a metallic implant made of titanium alloy. With identical geometry and loading condition, the composite implants assumed lower stresses, thus induced more loads to the bone and consequently reduced the risk of stress shielding, whilst the natural fiber reinforced composite showed promising result compared with carbon fibers. However, natural fibers, as well as carbon fibers, lack the power to improve interface debonding due to excessive loads in interface. Nevertheless, natural fiber reinforced composite could be an appropriate alternative given its capability of tailoring and achieving the optimal fiber orientation and robust design.


1999 ◽  
Vol 66 (1) ◽  
pp. 21-31 ◽  
Author(s):  
K. Ding ◽  
G. J. Weng

While there exist various homogenization theories for the plasticity of a fiber-reinforced composite, no such theories have been explicitly developed to account for the influence of a ductile interphase. In this paper a simple scheme is developed for such a purpose. The theory evolved out of the work of Qiu and Weng (1992) and Hu (1996), and bears an identical structure to Ponte Castan˜eda’s (1991) variational procedure and Suquet’s (1995, 1996) modified secant moduli approach. An exact solution under the plane-strain biaxial loading is also developed to assess the accuracy of the theory. It is found that, with either a soft or a hard interphase and with or without work-hardening, the homogenization theory can produce sufficiently accurate results under this condition. The theory is then used to examine the influence of the interphase volume concentration on the anisotropic behavior of the composite under axial tension, transverse tension, axial shear, and transverse shear, with both a soft and a hard interphase. The results indicate that, while the axial tensile behavior is not sensitive to the interphase concentration, the behaviors under other types of loading are greatly affected by its presence, especially when the interphase is softer than the matrix.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
S. I. Kundalwal ◽  
R. Suresh Kumar ◽  
M. C. Ray

This article deals with the investigation of the effect of carbon nanotube (CNT) waviness on the effective thermal conductivities of a novel fuzzy fiber-reinforced composite (FFRC). The distinctive feature of the construction of this novel FFRC is that wavy CNTs are radially grown on the circumferential surfaces of the carbon fibers. Effective thermal conductivities of the FFRC are determined by developing the method of cells (MOCs) approach in conjunction with the effective medium (EM) approach. The effect of CNT waviness is studied when wavy CNTs are coplanar with either of the two mutually orthogonal planes of the carbon fiber. The present study reveals that (i) if CNT waviness is parallel to the carbon fiber axis then the axial (K1) and the transverse (K2) thermal conductivities of the FFRC are improved by 86% and 640%, respectively, over those of the base composite when the CNT volume faction present in the FFRC is 16.5% and the temperature is 400 K, (ii) the effective value of K1 of the FFRC containing wavy CNTs being coplanar with the carbon fiber axis is enhanced by 75% over that of containing straight CNTs for the fixed CNT volume faction when the temperature is 400 K, and (iii) the CNT/polymer matrix interfacial thermal resistance does not affect the effective thermal conductivities of the FFRC. The present work also reveals that for a particular value of the CNT volume fraction, optimum values of the CNT waviness parameters, such as the amplitude and the wave frequency of the CNT for improving the effective thermal conductivities of the FFRC can be estimated.


Sign in / Sign up

Export Citation Format

Share Document