scholarly journals Influence of HRGO Nanoplatelets on Behaviour and Processing of PMMA Bone Cement for Surgery

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2027
Author(s):  
Jaime Orellana ◽  
Ynés Yohana Pastor ◽  
Fernando Calle ◽  
José Ygnacio Pastor

Bone cement, frequently based on poly (methyl methacrylate), is commonly used in different arthroplasty surgical procedures and its use is essential for prosthesis fixation. However, its manufacturing process reaches high temperatures (up to 120 °C), producing necrosis in the patients' surrounding tissues. To help avoid this problem, the addition of graphene could delay the polymerisation of the methyl methacrylate as it could, simultaneously, favour the optimisation of the composite material's properties. In this work, we address the effect of different percentages of highly reduced graphene oxide with different wt.% (0.10, 0.50, and 1.00) and surface densities (150, 300, 500, and 750 m2/g) on the physical, mechanical, and thermal properties of commercial poly (methyl methacrylate)-based bone cement and its processing. It was noted that a lower sintering temperature was achieved with this addition, making it less harmful to use in surgery and reducing its adverse effects. In contrast, the variation of the density of the materials did not introduce significant changes, which indicates that the addition of highly reduced graphene oxide would not significantly increase bone porosity. Lastly, the mechanical properties (strength, elastic modulus, and fracture toughness) were reduced by almost 20%. Nevertheless, their typical values are high enough that these new materials could still fulfil their structural function. In conclusion, this paper presents a way to control the sintering temperature, without significant degradation of the mechanical performance, by adding highly reduced graphene oxide so that local necrosis of bone cement based on poly (methyl methacrylate) used in surgery is avoided.

Author(s):  
Ynés Yohana Pastor ◽  
Jaime Orellana ◽  
Fernando Calle ◽  
José Ygnacio Pastor

Bone cement, mainly based in PMMA, is commonly used in different arthroplasty surgical proce-dures, and its use is essential for prosthesis fixation. However, its manufacturing process reaches high temperatures that can produce necrosis in the patients' surrounding tissues. In order to con-tribute to avoid this problem, the addition of graphene could delay the polymerisation of the MMA and, simultaneously, contribute to the optimisation of the composite material's properties. This article analysed the effect of the addition of different percentages of Highly Reduced Graphene Oxide (HRGO) with different wt. % (0,10, 0,50 and 1,00) and surface densities (150, 300, 500 and 750 m2/g) on the physical, mechanical, and thermal properties of commercial PMMA-based bone cement and its processing. It was noticed that a lower sintering temperature would be reached with this addition, making it less harmful to use in surgery and as it reduces its adverse effects. In contrast, the materials' density does not show significant changes, which indicates that the addi-tion of HRGO does not significantly increase its porosity. Lastly, the mechanical properties are re-duced by almost 20 %. Nevertheless, these properties are high enough so that these new materials can still fulfil their structural function.


2019 ◽  
Vol 4 (27) ◽  
pp. 7954-7958 ◽  
Author(s):  
Abul K. Mallik ◽  
Md. Lawshan Habib ◽  
Fataha N. Robel ◽  
Md. Shahruzzaman ◽  
Papia Haque ◽  
...  

2019 ◽  
Vol 30 (3) ◽  
pp. 2908-2919 ◽  
Author(s):  
Zabiholah Zabihi ◽  
Houshang Araghi ◽  
Paul Eduardo David Soto Rodriguez ◽  
Abderrahmane Boujakhrout ◽  
Reynaldo Villalonga

Sign in / Sign up

Export Citation Format

Share Document