scholarly journals In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2633
Author(s):  
Cristina Vallecillo ◽  
Manuel Toledano-Osorio ◽  
Marta Vallecillo-Rivas ◽  
Manuel Toledano ◽  
Raquel Osorio

Collagen matrices have become a great alternative to the use of connective tissue grafts for soft tissue augmentation procedures. One of the main problems with these matrices is their volume instability and rapid degradation. This study has been designed with the objective of examining the degradation of three matrices over time. For this purpose, pieces of 10 × 10 mm2 of Fibro-Gide, Mucograft and Mucoderm were submitted to three different degradation tests—(1) hydrolytic degradation in phosphate buffer solution (PBS); (2) enzyme resistance, using a 0.25% porcine trypsin solution; and (3) bacterial collagenase resistance (Clostridium histolyticum)—over different immersion periods of up to 50 days. Weight measurements were performed with an analytic microbalance. Thickness was measured with a digital caliper. A stereomicroscope was used to obtain the matrices’ images. ANOVA and Student–Newman–Keuls tests were used for mean comparisons (p < 0.05), except when analyzing differences between time-points within the same matrix and solution, where pair-wise comparisons were applied (p < 0.001). Fibro-Gide attained the highest resistance to all degradation challenges. The bacterial collagenase solution was shown to constitute the most aggressive test as all matrices presented 100% degradation before 14 days of storage.

2008 ◽  
Vol 69 (1) ◽  
pp. 148-156 ◽  
Author(s):  
James L. Cook ◽  
Derek B. Fox ◽  
Keiichi Kuroki ◽  
Manuel Jayo ◽  
Patrick G. De Deyne

2012 ◽  
Vol 626 ◽  
pp. 631-635 ◽  
Author(s):  
Mujtahid Kaavessina ◽  
Fitriani Khanifatun ◽  
Imtiaz Ali ◽  
Saeed M. Alzahrani

Poly (lactic acid) was solvent-blended and formed as thin ribbons with different weight fraction of hydroxyapatite, namely 5, 10 and 20wt%. In-vitro biodegradability of biocomposites was performed in phosphate buffer solution (PBS) at 37°C. The presence of hydroxyapatite tended to increase biodegradability of poly (lactic acid) in its biocomposites. Thermal stability of biocomposites was always higher than that neat poly (lactic acid) either before and after hydrolytic degradation tests. After biodegradation tests, some micro-holes and cracks were appeared in the surface morphology of biocomposites as well as the increasing crystallinity occurred.


2011 ◽  
Vol 37 (6) ◽  
pp. 760-767
Author(s):  
SEONG-HO JEONG ◽  
SEUNG-KYU HAN ◽  
WOO-KYUNG KIM

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 93
Author(s):  
Mario Beretta ◽  
Carlo Maiorana ◽  
Mattia Manfredini ◽  
Susanna Ferrario ◽  
Pier Paolo Poli

The quality and quantity of peri-implant soft tissues at the crestal portion of dental implants are important aspects to consider for a long-term successful implant-supported rehabilitation. Some relevant factors attributed to the implant health include mucosal thickness and keratinization. In this respect, many techniques and materials have been described to augment and improve buccal peri-implant soft tissues. Over the last few years, newly developed xenogeneic collagen matrices have been introduced in peri-implant plastic surgery to replace autogenous soft tissue grafts; however, data remain controversial so far. Thus, the purpose of the present report was to present a novel surgical technique conceived to augment buccal peri-implant soft tissues in combination with a volume-stable porcine collagen matrix. The rationale and the fundamental concepts that led to the use of a xenogeneic matrix to increase soft tissue volumes were also discussed.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1465 ◽  
Author(s):  
Yaret Torres-Hernández ◽  
Gloria Ortega-Díaz ◽  
Lucía Téllez-Jurado ◽  
Nayeli Castrejón-Jiménez ◽  
Alejandro Altamirano-Torres ◽  
...  

The aim of this work is to evaluate the effect of chitosan content (1, 3 and 5 wt %) dispersed in polylactic acid (PLA) on the structure and properties of composites. Also, the hydrolytic degradation, and the cell viability and adhesion of human MG-63 osteoblasts are analyzed to determine the composites’ suitability for use in tissue engineering. For the manufacture of the materials, natural chitosan was extracted chemically from shrimp exoskeleton. The composites were fabricated by extrusion, because it is a low-cost process, it is reproducible, and it does not compromise the biocompatibility of the materials. FT-IR and XRD show that the chitosan does not change the polymer structure, and interactions between the composite components are discarded. In vitro degradation tests show that the composites do not induce significant pH changes in phosphate buffer solution due to their low susceptibility to hydrolytic degradation. The adhesion and morphological characteristics of the osteoblasts are evaluated using confocal microscopy and scanning electron microscopy. The cell viability is determined by the MTT assay. Osteoblasts adhesion is observed on the surface of PLA and composites. A higher amount of chitosan, higher number of cells with osteoblastic morphology, and mineralized nodules are observed on the composite surface. The highest metabolic activity is evidenced at 21 days. The results suggest that the Polylactic acid/chitosan composites are potentially suitable for use as a biomaterial.


2009 ◽  
Vol 80 (11) ◽  
pp. 1852-1858 ◽  
Author(s):  
Olivier Etienne ◽  
Aurore Schneider ◽  
Jonathan A. Kluge ◽  
Claire Bellemin-Laponnaz ◽  
Camille Polidori ◽  
...  

e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Bowen Liu ◽  
Xiaoxuan Ma ◽  
Chenhui Zhu ◽  
Yu Mi ◽  
Daidi Fan ◽  
...  

Abstract A novel injectable hydrogel was fabricated by human-like collagen (HLC) and carboxymethylcellulose (CMC) with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and adipic acid dihydrazide (ADH) as cross-linkers. The morphology and structure of the hydrogels were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. The results showed that the HLC and CMC were successfully cross-linked through amide bonds and HLC could enhance the pore size of the composite, whereas CMC could be a strong backbone in the hydrogel to keep its appearance. The results of thermogravimetric analysis showed that the thermostability of HLC/CMC was strengthened significantly as compared with that of CMC. The tests of the equilibrium swelling ratio and in vitro degradability indicated that the HLC/CMC hydrogel possesses good water absorbing ability and slow degradability in vitro. Finally, biocompatibility test provided the possibility that HLC/CMC hydrogels are suitable for biomedical applications such as soft tissue augmentation for their good biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document