scholarly journals The Relationship between Crystal Structure and Mechanical Performance for Fabrication of Regenerated Cellulose Film through Coagulation Conditions

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4450
Author(s):  
Tessei Kawano ◽  
Satoshi Iikubo ◽  
Yoshito Andou

Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH–urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their dielectric constant on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by inter- and intramolecular hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC films strongly correlate to the dielectric constant of solvents used for the coagulation process. This work, therefore, would be able to provide an indicator to control the mechanical performance of RC film depending on its application and to develop detailed researches on controlling the crystal structure of cellulose.

2021 ◽  
Author(s):  
Tessei Kawano ◽  
Satoshi Iikubo ◽  
Yoshito Andou

Abstract Cellulose films regenerated from aqueous alkali-urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH/urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their polarity on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by intra- and inter-hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC film strongly correlate to the dielectric constant of solvents used for coagulation process. This work, therefore, would be able to provide an indicator to control the properties of RC film depending on its application and to develop the detailed research on controlling the crystal structure of cellulose.


1996 ◽  
Vol 52 (1) ◽  
pp. 145-150 ◽  
Author(s):  
T. R. Govindachari ◽  
Geetha Gopalakrishnan ◽  
S. S. Rajan ◽  
V. Kabaleeswaran ◽  
L. Lessinger

Azadirachtin-H, isolated from the seed kernels of Azadirachta indica (neem), crystallizes in space group I4, Z = 8, with disordered ethyl acetate solvent filling channels along the fourfold rotation axes. The crystal structure determination showed that the previously reported molecular structure deduced from NMR studies was correct except for the stereochemistry at C(11). Azadirachtin-H, which belongs to a group of C-seco-tetranortriterpenoids (C-seco-limonoids) of great interest for their insect antifeedant and ecdysis-inhibiting activity, has some unusual features: the absence of a carbomethoxy group at C(11); the presence of a cyclic hemiacetal function at C(11); the α-orientation of the hydroxyl group on C(11), opposite to that in all other known azadirachtins with a hydroxyl group on C(11), except azadirachtin-I. There is no intramolecular hydrogen bonding. In this crystal the rotation of the two major moieties of the azadirachtin-H molecule about the single connecting C(8)—C(14) bond is quite different from that in azadirachtin-A, whose crystal structure has recently been determined.


1989 ◽  
Vol 42 (7) ◽  
pp. 1103 ◽  
Author(s):  
CO Miles ◽  
L Main ◽  
BK Nicholson

Two improved general routes to 2′,6′-dihydroxychalcones are described in which the final step is protective-group removal from O 2′ under mild acid conditions. The first involves base-catalysed condensation of benzaldehydes with 2′-hydroxy-6′-tetrahydropyran-2-yloxyacetophenone, the second ring-opening of 5-hydroxyflavanones with 1,8-diazabicyclo[5.4.0]undec-7-ene in the presence of a trialkylchlorosilane to trap out the chalcone as a bis silyl ether. Chalcones prepared by the first route are 2',6'-dihydroxychalcone (1), and its 4-methoxy (2), 3,4-dimethoxy (3), 3,4,5-trimethoxy (4), and 2,4,6-trimethoxy (5) derivatives. The 4-chloro derivative (6) and the chalcone from hesperetin are prepared by the second method. .The X-ray crystal structure of 2',6'-dihydroxy-2,4,6-trimethoxychalcone (5), the first for a 2',6′-dihydroxychalcone, is reported, the hydrogen involved in intramolecular hydrogen-bonding between the carbonyl and phenolic oxygens being located for the first time for any 2'-hydroxychalcone derivative. The O 6' involved in the intramolecular hydrogen-bonding is also hydrogen-bonded intermolecularly to the hydrogen of the other (2'-)hydroxy group of a neighbouring molecule in the lattice. 13C n.m.r. data are the first reported for a series of 2',6'-dihydroxychalcones.


1996 ◽  
Vol 49 (11) ◽  
pp. 1251
Author(s):  
CF Carvalho ◽  
DP Arnold ◽  
RC Bott ◽  
G Smith

The crystal structure of the asymmetric 1,3-diol 1,1-diphenylbutane-1,3-diol has been determined and refined to a residual R of 0.039 for 795 observed reflections. Crystals are orthorhombic, space group P212121, with four molecules in a cell of dimensions a 9.625(4), b 16.002(3), c 8.834(3) Ǻ. The compound is unique among the known crystallographically characterized open-chain 1,3-diols in having only intramolecular hydrogen bonding involving the hydroxy groups [O-- -O 2.602(5) Ǻ].


1995 ◽  
Vol 48 (4) ◽  
pp. 869 ◽  
Author(s):  
G Smith ◽  
EJ Oreilly ◽  
SA See ◽  
KA Byriel ◽  
CHL Kennard

The ring-substituted phenoxyacetic acid (2-benzoyl-5-methoxyphenoxy)acetic acid (HL) (3) and its complex adduct dimer (4) with sodium, [Na2(L)2(HL)2].2HL, have been synthesized and their structures determined by X-ray diffraction. The acid (3) does not have the usual cyclic hydrogen-bonded dimer association, but instead has three-centre intramolecular hydrogen bonding between the carboxyl proton and both the ether and keto oxygens [O---O, 2.602(3), 2.711(3) Ǻ respectively]. Each sodium in the centrosymmetric complex dimer (4) is seven-coordinate [Na-O, 2.313(5)-2.612(5) Ǻ], involving the 'inner' three oxygens of both a protonated and an ionic ligand molecule. In addition, one of these carboxyl oxygens forms a bridge to the inversion-related sodium, while the uncoordinated carboxyl oxygen is hydrogen-bonded to a protonated carboxy group [O---O, 2.464(8) Ǻ]. The molecules of the lattice acid have only one hydrogen-bonded association with the second uncoordinated carboxy group in the dimer [O---O, 2.513(7) Ǻ].


Sign in / Sign up

Export Citation Format

Share Document