tensile tester
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 41)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Baoquan Chen ◽  
Junbiao Liu ◽  
xiaoxian li ◽  
Weiqing Chen ◽  
xuehui zhang ◽  
...  

Abstract To enhance surface mechanical properties of 690TT alloy, a surface hardening layer was obtained by ultrasonic surface rolling treatment (USRT) and plasma nitriding (PN). The surface morphology, mechanical properties, wear performances and corrosion performance were investigated by XRD, TEM, using a hardness tester, tensile tester, wear tester and electrochemical workstation in simulated sea water, respectively. The results showed that USRT as the pre-treatment can strengthen the performance of PN treatment samples. The USRT+PN treated sample showed existence of dislocation tangles and twin grains. Corrosion resistance in simulated sea water was enhanced. The surface microhardness increased by 180 % compared with the untreated sample, the cross-sectional hardness gradually decreased till the depth of 1mm. The tensile strength increased by a factor of 90% while the elongation decreased by only 40%. The wear scar was narrower and shallower than the untreated sample and the wear rate was significantly dropped. This paper aims at providing a new method for surface strengthening of 690TT alloy.


Author(s):  
Atsutaka Tamura ◽  
Soichiro Nishikawa

Abstract The spinal cord is encased by spinal meninges called the pia, arachnoid, and dura maters. Among these membranes, the dura mater is the thick and outermost layer and is the toughest and strongest. Thus, mechanical failure of the dura mater can lead to spontaneous cerebrospinal fluid leaks or hypovolemia, resulting in a complication or exacerbation of unfavorable symptoms involved in a mild traumatic brain injury. To develop protective equipment that can help prevent such injuries, accurate characterization of the spinal dura mater is required, especially regarding the mechanical properties at different anatomical sites. In this study, we used an equiload biaxial tensile tester to investigate the mechanical properties of porcine meningeal dura mater along the whole length of the spine. The resultant strain of the dorsal side was greater than that of the ventral side (P < 0.01), while the circumferential direction was significantly stiffer than the longitudinal direction (P < 0.01) at lower strains regardless of the spinal level. We also found that the material stiffness progressively increased from the cervical level to the thoracolumbar level at lower strains, which implies that the dura mater inherently possesses structurally preferred features or functions because the neck requires sufficient flexibility for daily activities. Further, Young's modulus was significantly less on the dorsal side than on the ventral side at higher strains (P < 0.05), suggesting that the dorsal side is readily elongated by spinal flexion even within the range of physiological motion.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4450
Author(s):  
Tessei Kawano ◽  
Satoshi Iikubo ◽  
Yoshito Andou

Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH–urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their dielectric constant on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by inter- and intramolecular hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC films strongly correlate to the dielectric constant of solvents used for the coagulation process. This work, therefore, would be able to provide an indicator to control the mechanical performance of RC film depending on its application and to develop detailed researches on controlling the crystal structure of cellulose.


2021 ◽  
Vol 9 ◽  
Author(s):  
Monika Vyskočová ◽  
◽  
Maroš Martinkovič ◽  
Martin Necpál ◽  
Maroš Vyskoč ◽  
...  

The article deals with the local plastic deformation analysis after cold forming. The technology of drawing seamless steel tubes was used to obtain cold-formed samples. The tubes were manufactured by a Tinius Olsen 300ST tensile tester with a 6 ° and 12 ° die drawn without and with an inner mandrel. Based on orientation size recalculated by stereology and applying Monte Carlo method a mathematical conversion model was developed. Implemented model together with surface measurements and structure characteristics were used to get the orientation to the size of the deformation. Thus, the actual (logarithmic) deformations and local stresses were determined. Comparison of experimentally measured values of the actual local plastic deformation with the deformation calculated found on the model simulation in the Deform program defined the significance of the differences assessed by means of a statistical T-test. All differences in the values of the local plastic deformation with respect to the position were evaluated as statistically insignificant and therefore the difference between the experimental calculation and the simulation is random.


2021 ◽  
Vol 2021 ◽  
pp. 18-25
Author(s):  
S.A. Odhiambo ◽  
S. Vasile ◽  
J. Sarrazyn ◽  
I. Rottiers ◽  
A. De Raeve

Strain sensing seams have been developed by integrating conductive sewing threads in different types of seam designs on a fabric typical for sports clothing using sewing technology. The aim was to obtain a simply integrated stitch-based sensor that can be applied on sports clothing to monitor the movements of the upper body parts of the user during exercising. Stitch types 304; 406; 602 and 605 were produced. The seams were made on a knitted fabric composed of 80% polyamide 6.6 and 20% elastane. The seams underwent stretch cycling for 10 cycles and up to 44 cycles following EN ISO 14704-1:2005 (modified), using an INSTRON tensile tester machine. The changes in the resistance of the seams with time were recorded simultaneously using Agilent meter U1273A. Sensing functionality among which is sensor gauge factor (GF), stability, drift, and reproducibility were evaluated on the promising sensor seams. The type of base fabric used, stitch type, stitch formation process (friction and dynamic forces during sewing), integrated EC thread length, and positioning of thread(s) in the fabric have a significant influence on the performance of the seams. Sensor seam 406-001comprising 2 EC yarns (Madeira HC12) and Sensor seam 304-010 comprising 1 EC yarn (Madeira HC40) turned out to be very promising and others shall be improved (sensor 602-006 with Madeira HC 40 and sensor 605-002 with a Muriel yarn).


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1869
Author(s):  
A K M Mashud Alam ◽  
Donovan Jenks ◽  
George A. Kraus ◽  
Chunhui Xiang

Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-Rae Jang ◽  
Robin Jeong ◽  
Hak-Sung Kim ◽  
Simon S. Park

AbstractAdditively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.


2021 ◽  
Author(s):  
Tessei Kawano ◽  
Satoshi Iikubo ◽  
Yoshito Andou

Abstract Cellulose films regenerated from aqueous alkali-urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH/urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their polarity on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by intra- and inter-hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC film strongly correlate to the dielectric constant of solvents used for coagulation process. This work, therefore, would be able to provide an indicator to control the properties of RC film depending on its application and to develop the detailed research on controlling the crystal structure of cellulose.


Author(s):  
Nilay Tuccar Kilic ◽  
Buse Nur Can ◽  
Mehmet Kodal ◽  
Güralp Özkoç

In this study, the compatibilization effects of triglycidylisobutyl polyhedral oligomeric silsesquioxane (TEpPOSS) on biodegradable poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were investigated. All blends were prepared via melt blending and PLA/TPU (80/20, 70/30, 50/50 wt%) ratio was selected as the experimental parameter. In order to predict the selective localization of TEpPOSS thermodynamically, wetting coefficient were determined by means of surface energy measurements. Morphological analyses were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, rheological, mechanical, thermomechanical and thermal properties of the blends were performed via rheometer, universal tensile tester, dynamic mechanic analyses and differential scanning calorimeter (DSC), respectively. Morphological test results revealed that TEpPOSSs were mostly located at the interfaces of the PLA and TPU phases. According to the rheological studies, the interfacial interactions between PLA and TPU were improved with the addition of TEpPOSS, which resulted from the potential reactions between epoxy-carboxylic acid and/or epoxy-hydroxyl functional groups. The addition of TEpPOSS enhanced the mechanical properties of PLA/TPU blends. DSC test results revealed a decrease in the glass transition temperatures of PLA in the presence of TEpPOSS, which was an another indication of improved compatibility between PLA and TPU.


Sign in / Sign up

Export Citation Format

Share Document