scholarly journals Vibration and Sound Response of Glass-Fiber-Reinforced Polyamide 6 Using Microcellular-Foaming-Process-Applied Injection Molding Process

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Hyun Keun Kim ◽  
Jaehoo Kim ◽  
Donghwi Kim ◽  
Youngjae Ryu ◽  
Sung Woon Cha

In this study, the vibration and sound response characteristics of composites produced via injection molding applied with a microcellular foaming process (MCPs) were improved. The study was conducted using PA6 and glass fiber composites, which are representative thermoplastic engineering plastics. Two types of specimens were used: a plate specimen to confirm the basic sound and vibration characteristics, and a large roof-rack specimen from an actual vehicle with a complex shape. The frequency response function curve was calculated by conducting an impact test, and natural frequency and damping ratio were measured based on the curve. The results confirmed that, in the case of a specimen manufactured through the injection molding process to which MCPs were applied, the natural frequency was lowered, and the damping ratio decreased. The degree of change in the natural frequency and damping ratio was confirmed. To determine the cause of the change in the natural frequency and damping ratio, the mode shape at the natural frequency of each specimen was measured and the relationship was confirmed by measuring the density and the elastic modulus of the composite. In addition, the usability of the specimens to which MCPs were applied was verified by conducting impact strength and tensile strength tests.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1569
Author(s):  
Selim Mrzljak ◽  
Alexander Delp ◽  
André Schlink ◽  
Jan-Christoph Zarges ◽  
Daniel Hülsbusch ◽  
...  

Short glass fiber reinforced plastics (SGFRP) offer superior mechanical properties compared to polymers, while still also enabling almost unlimited geometric variations of components at large-scale production. PA6-GF30 represents one of the most used SGFRP for series components, but the impact of injection molding process parameters on the fatigue properties is still insufficiently investigated. In this study, various injection molding parameter configurations were investigated on PA6-GF30. To take the significant frequency dependency into account, tension–tension fatigue tests were performed using multiple amplitude tests, considering surface temperature-adjusted frequency to limit self-heating. The frequency adjustment leads to shorter testing durations as well as up to 20% higher lifetime under fatigue loading. A higher melt temperature and volume flow rate during injection molding lead to an increase of 16% regarding fatigue life. In situ Xray microtomography analysis revealed that this result was attributed to a stronger fiber alignment with larger fiber lengths in the flow direction. Using digital volume correlation, differences of up to 100% in local strain values at the same stress level for different injection molding process parameters were identified. The results prove that the injection molding parameters have a high influence on the fatigue properties and thus offer a large optimization potential, e.g., with regard to the component design.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 360 ◽  
Author(s):  
Hyun Kim ◽  
Joo Sohn ◽  
Youngjae Ryu ◽  
Shin Kim ◽  
Sung Cha

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens. In addition, by applying the MCP to injection molding, it was confirmed that warpage was improved by reducing the shrinkage difference. To further confirm these results, the effects of cell formation on shrinkage and fiber orientation were investigated using scanning electron microscopy, micro-CT observation, and cell morphology analysis. The micro-CT observations revealed that the fiber orientation was non-directional for the MCP. Moreover, it was determined that the mechanical and thermal properties were improved, based on measurements of the impact strength, tensile strength, flexural strength, and deflection temperature for the MCP.


2019 ◽  
Vol 20 (7) ◽  
pp. 1526-1537 ◽  
Author(s):  
Wei Guo ◽  
Bo He ◽  
Huajie Mao ◽  
Mengying Zhang ◽  
Lin Hua ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 550-556 ◽  
Author(s):  
Ming Hsiung Ho ◽  
Pin Ning Wang ◽  
Chin Ping Fung

This study investigates the effect of various injection molding process parameters and fiber amount on buckling properties of Polybutylene Terephthalate (PBT)/short glass fiber composite. The buckling specimens were prepared under injection molding process. These forming parameters about filling time, melt temperature and mold temperature that govern injection molding process are discussed. The buckling properties of neat PBT, 15 wt%, and 30 wt% are obtained using two ends fixed fixture and computerized closed-loop server-hydraulic material testing system. The fracture surfaces are observed by scanning electron microscopy (SEM). The global buckling forces are raised when increased the fiber weight percentage of PBT. Also, the fracture mechanisms in PBT and short glass fiber matrix are fiber pullout in skin area and fiber broken at core area. It is found that the addition of short glass fiber can significantly strengthen neat PBT.


Sign in / Sign up

Export Citation Format

Share Document