scholarly journals Modeling and Analysis of Maximum Power Tracking of a 600 kW Hydraulic Energy Storage Wind Turbine Test Rig

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 706 ◽  
Author(s):  
Wei ◽  
Zhan ◽  
Liu ◽  
Tao ◽  
Yue

An innovative wind turbine with a particular hydraulic transmission and energy storage system is proposed in this paper. The purpose of applying the hydraulic transmission is to remove the gearbox and power converter of traditional wind turbine and cooperate on wind resource storing with the energy storage system. To overcome the volatility and intermittence shortcomings of wind and improve the output power quality, hydraulic accumulators are used as the energy storage device for wind energy regulation. The original gearbox and generator in the nacelle of a Micon 600 wind turbine were removed and replaced with a hydraulic pump to make a test rig for the investigation into maximum power point tracking (MPPT) of this hydraulic wind turbine concept. The mathematical model of the entire test system is established according to the four function modules. The MPPT control strategy based on the tip speed ratio (TSR) is adopted and a control system containing three closed-loop controls is designed to achieve maximum wind power extracting and produce constant frequency power generation. Ultimately, the dynamic response of rotor speed control is revealed under step change of wind speed and the maximum power tracking performance of the 600 kW hydraulic energy storage wind turbine test bench is simulated and analysed by subjecting to turbulent speed condition. The simulation results demonstrate that the rotor of the wind turbine can run at the expected optimal speed depending on wind speed, and the wind power utilization coefficient of the unit is stabilized at about the maximum value.

Author(s):  
Eric Mohr ◽  
Biswaranjan Mohanty ◽  
Kim A. Stelson

Abstract A Hydrostatic Transmission (HST) offers a variable ratio transmission for wind turbines that has a higher power to weight ratio than traditional gearboxes, and requires less maintenance. In a conventional turbine, when the wind speed increases above the rated speed, the blade pitch is controlled to dissipate excess energy and regulate the turbine at rated power. An energy storage system allows the turbine to temporarily operate above rated power, and capture the traditionally dissipated energy in an accumulator. When the wind speed drops below the rated speed, the energy in the accumulator is released, increasing the delivered power This paper presents a high-fidelity mathematical model of the hydraulic hybrid wind turbine transmission. Simulation results for a series of step changes and for turbulent wind speed are investigated for a 60 kW turbine. Using a realistic turbulent wind data sample, energy production increased by 4% with a 52 liter accumulator with significantly smoother output power to the grid.


Author(s):  
Güngör BAL ◽  
Süleyman Emre EYİMAYA

Due to uncontrolled natural variables such as wind speed, the correlation between the renewable energy production and the demand is strenuous. In order to make the renewable enrgy system effective the energy storage systems are utilized employing the, control systems for the enegy in the battery and power. In addition, the rapidly changing wind speed, particularly in wind turbines, causes variations in the power obtained from wind causing instability at a higher power levels. The system engaged in storing energy is employed to reduce fluctuations in power and to maintain stability of power systems. In this study, a wind turbine system integrated with energy storage system was created. This system is modeled and tested in MATLAB / Simulink. The results obtained evinces that the proposed system reduces power fluctuations and succeeds in meeting load demand.


2018 ◽  
Vol 8 (8) ◽  
pp. 1314 ◽  
Author(s):  
Liejiang Wei ◽  
Zengguang Liu ◽  
Yuyang Zhao ◽  
Gang Wang ◽  
Yanhua Tao

In this paper, an innovative closed hydraulic wind turbine with an energy storage system is proposed. The hydraulic wind turbine consists of the wind rotor, the variable pump, the hydraulic bladder accumulator, the variable motor, and the synchronous generator. The wind energy captured by the wind rotor is converted into hydraulic energy by the variable pump, and then the hydraulic energy is transformed into electrical energy by the variable motor and generator. In order to overcome the fluctuation and intermittence shortcomings of wind power, the hydraulic bladder accumulator is used as an energy storage system in this system to store and release hydraulic energy. A double-loop speed control scheme is presented to allow the wind rotor to operate at optimal aerodynamic performance for different wind speeds and hold the motor speed at the synchronous speed to product constant frequency electrical power regardless of the changes of wind speed and load power. The parameter design and modeling of 600 kW hydraulic wind turbine are accomplished according to the Micon 600 kW wind turbine. Ultimately, time-domain simulations are completed to analyze the dynamic response of the hydraulic wind turbine under the step change conditions of wind speed, rotor speed input, and load power. The simulation results validate the efficiency of the hydraulic wind turbine and speed control scheme presented, moreover, they also show that the systems can achieve the automatic matching among turbine energy, accumulator energy, and generator output energy.


Sign in / Sign up

Export Citation Format

Share Document